Risk factors and drug discovery for cognitive impairment in type 2 diabetes mellitus using artificial intelligence interpretation and graph neural networks

医学 可解释性 2型糖尿病 糖尿病 接收机工作特性 蒙特利尔认知评估 人口 2型糖尿病 内科学 认知障碍 疾病 机器学习 内分泌学 计算机科学 环境卫生
作者
Xin Zhang,Jiajia Xie,Xiong You,Houwu Gong
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14 被引量:2
标识
DOI:10.3389/fendo.2023.1213711
摘要

Background Among the 382 million diabetic patients worldwide, approximately 30% experience neuropathy, and one-fifth of these patients eventually develop diabetes cognitive impairment (CI). However, the mechanism underlying diabetes CI remains unknown, and early diagnostic methods or effective treatments are currently not available. Objective This study aimed to explore the risk factors for CI in patients with type 2 diabetes mellitus (T2DM), screen potential therapeutic drugs for T2DM-CI, and provide evidence for preventing and treating T2DM-CI. Methods This study focused on the T2DM population admitted to the First Affiliated Hospital of Hunan College of Traditional Chinese Medicine and the First Affiliated Hospital of Hunan University of Chinese Medicine. Sociodemographic data and clinical objective indicators of T2DM patients admitted from January 2018 to December 2022 were collected. Based on the Montreal Cognitive Assessment (MoCA) Scale scores, 719 patients were categorized into two groups, the T2DM-CI group with CI and the T2DM-N group with normal cognition. The survey content included demographic characteristics, laboratory serological indicators, complications, and medication information. Six machine learning algorithms were used to analyze the risk factors of T2DM-CI, and the Shapley method was used to enhance model interpretability. Furthermore, we developed a graph neural network (GNN) model to identify potential drugs associated with T2DM-CI. Results Our results showed that the T2DM-CI risk prediction model based on Catboost exhibited superior performance with an area under the receiver operating characteristic curve (AUC) of 0.95 (specificity of 93.17% and sensitivity of 78.58%). Diabetes duration, age, education level, aspartate aminotransferase (AST), drinking, and intestinal flora were identified as risk factors for T2DM-CI. The top 10 potential drugs related to T2DM-CI, including Metformin, Liraglutide, and Lixisenatide, were selected by the GNN model. Some herbs, such as licorice and cuscutae semen, were also included. Finally, we discovered the mechanism of herbal medicine interventions in gut microbiota. Conclusion The method based on Interpreting AI and GNN can identify the risk factors and potential drugs associated with T2DM-CI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tao发布了新的文献求助10
刚刚
syx发布了新的文献求助10
1秒前
苻青发布了新的文献求助10
1秒前
为你博弈发布了新的文献求助10
1秒前
小迪应助陈永伟采纳,获得10
2秒前
CC完成签到,获得积分10
2秒前
昏睡的老黑完成签到,获得积分10
2秒前
3秒前
穆振家完成签到,获得积分10
3秒前
Langren0909完成签到,获得积分20
5秒前
5秒前
科研通AI2S应助敬老院N号采纳,获得10
6秒前
FashionBoy应助赵wenjing采纳,获得10
6秒前
琉璃完成签到,获得积分10
6秒前
7秒前
烟花应助xxxxxliang采纳,获得10
7秒前
7秒前
今后应助Wendy含采纳,获得10
8秒前
9秒前
9秒前
10秒前
Dding应助大气采纳,获得20
11秒前
12秒前
自然卷发布了新的文献求助10
12秒前
12秒前
体育爱好者完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
18秒前
19秒前
闪闪飞机发布了新的文献求助10
19秒前
19秒前
19秒前
脑洞疼应助小叔采纳,获得10
19秒前
可爱的函函应助cayn采纳,获得10
20秒前
一池楼台完成签到,获得积分10
20秒前
领导范儿应助琉璃采纳,获得10
20秒前
程程发布了新的文献求助10
21秒前
赵wenjing发布了新的文献求助10
21秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410794
求助须知:如何正确求助?哪些是违规求助? 3014348
关于积分的说明 8862922
捐赠科研通 2701746
什么是DOI,文献DOI怎么找? 1481239
科研通“疑难数据库(出版商)”最低求助积分说明 684750
邀请新用户注册赠送积分活动 679247