亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk factors and drug discovery for cognitive impairment in type 2 diabetes mellitus using artificial intelligence interpretation and graph neural networks

医学 可解释性 2型糖尿病 糖尿病 接收机工作特性 蒙特利尔认知评估 人口 2型糖尿病 内科学 认知障碍 疾病 机器学习 内分泌学 计算机科学 环境卫生
作者
Xin Zhang,Jiajia Xie,Xiong You,Houwu Gong
出处
期刊:Frontiers in Endocrinology [Frontiers Media]
卷期号:14 被引量:2
标识
DOI:10.3389/fendo.2023.1213711
摘要

Background Among the 382 million diabetic patients worldwide, approximately 30% experience neuropathy, and one-fifth of these patients eventually develop diabetes cognitive impairment (CI). However, the mechanism underlying diabetes CI remains unknown, and early diagnostic methods or effective treatments are currently not available. Objective This study aimed to explore the risk factors for CI in patients with type 2 diabetes mellitus (T2DM), screen potential therapeutic drugs for T2DM-CI, and provide evidence for preventing and treating T2DM-CI. Methods This study focused on the T2DM population admitted to the First Affiliated Hospital of Hunan College of Traditional Chinese Medicine and the First Affiliated Hospital of Hunan University of Chinese Medicine. Sociodemographic data and clinical objective indicators of T2DM patients admitted from January 2018 to December 2022 were collected. Based on the Montreal Cognitive Assessment (MoCA) Scale scores, 719 patients were categorized into two groups, the T2DM-CI group with CI and the T2DM-N group with normal cognition. The survey content included demographic characteristics, laboratory serological indicators, complications, and medication information. Six machine learning algorithms were used to analyze the risk factors of T2DM-CI, and the Shapley method was used to enhance model interpretability. Furthermore, we developed a graph neural network (GNN) model to identify potential drugs associated with T2DM-CI. Results Our results showed that the T2DM-CI risk prediction model based on Catboost exhibited superior performance with an area under the receiver operating characteristic curve (AUC) of 0.95 (specificity of 93.17% and sensitivity of 78.58%). Diabetes duration, age, education level, aspartate aminotransferase (AST), drinking, and intestinal flora were identified as risk factors for T2DM-CI. The top 10 potential drugs related to T2DM-CI, including Metformin, Liraglutide, and Lixisenatide, were selected by the GNN model. Some herbs, such as licorice and cuscutae semen, were also included. Finally, we discovered the mechanism of herbal medicine interventions in gut microbiota. Conclusion The method based on Interpreting AI and GNN can identify the risk factors and potential drugs associated with T2DM-CI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
可爱的函函应助冷静初蓝采纳,获得10
58秒前
1分钟前
1分钟前
冷静初蓝完成签到,获得积分10
1分钟前
冷静初蓝发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
高点点发布了新的文献求助50
2分钟前
4分钟前
平凡之路发布了新的文献求助10
4分钟前
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
opq856完成签到 ,获得积分20
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
MarIe发布了新的文献求助30
6分钟前
崔洪瑞完成签到,获得积分10
7分钟前
春子完成签到,获得积分10
7分钟前
7分钟前
horse90发布了新的文献求助10
7分钟前
MarIe完成签到,获得积分10
7分钟前
Lucas应助yixuebing采纳,获得10
7分钟前
7分钟前
墨aizhan完成签到 ,获得积分10
8分钟前
yixuebing发布了新的文献求助10
8分钟前
春子关注了科研通微信公众号
8分钟前
李建勋应助冷静新烟采纳,获得10
8分钟前
7H4N发布了新的文献求助10
8分钟前
华仔应助那那采纳,获得10
8分钟前
春子发布了新的文献求助10
8分钟前
Invincible完成签到 ,获得积分10
9分钟前
香蕉觅云应助xinye采纳,获得30
9分钟前
金轩完成签到 ,获得积分10
9分钟前
xinye完成签到,获得积分20
9分钟前
迅速戒指发布了新的文献求助30
9分钟前
9分钟前
9分钟前
9分钟前
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767088
求助须知:如何正确求助?哪些是违规求助? 3311548
关于积分的说明 10158875
捐赠科研通 3026748
什么是DOI,文献DOI怎么找? 1661328
邀请新用户注册赠送积分活动 793951
科研通“疑难数据库(出版商)”最低求助积分说明 755889