亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Listeria monocytogenes virulence potential using whole genome sequencing and machine learning

毒力 单核细胞增生李斯特菌 支持向量机 生物 机器学习 人工智能 多位点序列分型 基因组 预测建模 计算生物学 基因 遗传学 计算机科学 基因型 细菌
作者
Alexander Gmeiner,Patrick Murigu Kamau Njage,Lisbeth Truelstrup Hansen,Frank Møller Aarestrup,Pimlapas Leekitcharoenphon
出处
期刊:International Journal of Food Microbiology [Elsevier]
卷期号:410: 110491-110491
标识
DOI:10.1016/j.ijfoodmicro.2023.110491
摘要

Contamination with food-borne pathogens, such as Listeria monocytogenes, remains a big concern for food safety. Hence, rigorous and continuous microbial surveillance is a standard procedure. At this point, however, the food industry and authorities only focus on detection of Listeria monocytogenes without characterization of individual strains into groups of more or less concern. As whole genome sequencing (WGS) gains increasing interest in the industry, this methodology presents an opportunity to obtain finer resolution of microbial traits such as virulence. Within this study, we therefore aimed to explore the use of WGS in combination with Machine Learning (ML) to predict L. monocytogenes virulence potential on a sub-species level. The WGS datasets used in this study for ML model training consisted of i) national surveillance isolates (n = 169, covering 38 MLST types) and ii) publicly available isolates acquired through the GenomeTrakr network (n = 2880, spanning 80 MLST types). We used the clinical frequency, i.e., ratio of the number of clinical isolates to total amount of isolates, as estimate for virulence potential. The predictive performance of input features from three different genomic levels (i.e., virulence genes, pan-genome genes, and single nucleotide polymorphisms (SNPs)) and six machine learning algorithms (i.e., Support Vector Machine with a linear kernel, Support Vector Machine with a radial kernel, Random Forrest, Neural Networks, LogitBoost, and Majority Voting) were compared. Our machine learning models predicted sub-species virulence potential with nested cross-validation F1-scores up to 0.88 for the majority voting classifier trained on national surveillance data and using pan-genome genes as input features. The validation of the pre-trained ML models based on 101 previously in vivo studied isolates resulted in F1-scores up to 0.76. Furthermore, we found that the more rapid and less computationally intensive raw read alignment yields comparably accurate models as de novo assembly. The results of our study suggest that a majority voting classifier trained on pan-genome genes is the best and most robust choice for the prediction of clinical frequency. Our study contributes to more rapid and precise characterization of L. monocytogenes virulence and its variation on a sub-species level. We further demonstrated a possible application of WGS data in the context of microbial hazard characterization for food safety. In the future, predictive models may assist case-specific microbial risk management in the food industry. The python code, pre-trained models, and prediction pipeline are deposited at (https://github.com/agmei/LmonoVirulenceML).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36秒前
lpcxly发布了新的文献求助10
40秒前
59秒前
1437594843完成签到 ,获得积分10
1分钟前
lpcxly发布了新的文献求助10
1分钟前
1分钟前
lpcxly发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lpcxly发布了新的文献求助10
2分钟前
2分钟前
lpcxly发布了新的文献求助10
2分钟前
2分钟前
xiaodong发布了新的文献求助100
2分钟前
2分钟前
坚强的虔完成签到,获得积分20
2分钟前
坚强的虔发布了新的文献求助10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
藤椒辣鱼应助科研通管家采纳,获得10
3分钟前
3分钟前
奋斗的萝发布了新的文献求助30
3分钟前
cc应助奋斗的萝采纳,获得10
4分钟前
cc应助奋斗的萝采纳,获得10
4分钟前
wanci应助奋斗的萝采纳,获得10
4分钟前
科研通AI2S应助lpcxly采纳,获得10
4分钟前
丘比特应助xiaodong采纳,获得10
4分钟前
4分钟前
xiaodong发布了新的文献求助10
4分钟前
4分钟前
xiaodong完成签到,获得积分10
5分钟前
藤椒辣鱼应助科研通管家采纳,获得10
5分钟前
藤椒辣鱼应助科研通管家采纳,获得10
5分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
5分钟前
藤椒辣鱼应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助苑阿宇采纳,获得10
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
5分钟前
Nc发布了新的文献求助20
5分钟前
6分钟前
Nc完成签到,获得积分10
6分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055200
捐赠科研通 2746957
什么是DOI,文献DOI怎么找? 1507179
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695936