亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

All-analog photoelectronic chip for high-speed vision tasks

计算机科学 转换器 MNIST数据库 编码器 计算机硬件 光学计算 模拟电子学 帧速率 炸薯条 模拟计算机 电子工程 人工智能 电气工程 电子线路 深度学习 电压 工程类 电信 操作系统
作者
Yitong Chen,Maimaiti Nazhamaiti,Han Xu,Yao Meng,Tiankuang Zhou,Guangpu Li,Jingtao Fan,Qi Wei,Jiamin Wu,Fei Qiao,Lu Fang,Qionghai Dai
出处
期刊:Nature [Springer Nature]
卷期号:623 (7985): 48-57 被引量:103
标识
DOI:10.1038/s41586-023-06558-8
摘要

Abstract Photonic computing enables faster and more energy-efficient processing of vision data 1–5 . However, experimental superiority of deployable systems remains a challenge because of complicated optical nonlinearities, considerable power consumption of analog-to-digital converters (ADCs) for downstream digital processing and vulnerability to noises and system errors 1,6–8 . Here we propose an all-analog chip combining electronic and light computing (ACCEL). It has a systemic energy efficiency of 74.8 peta-operations per second per watt and a computing speed of 4.6 peta-operations per second (more than 99% implemented by optics), corresponding to more than three and one order of magnitude higher than state-of-the-art computing processors, respectively. After applying diffractive optical computing as an optical encoder for feature extraction, the light-induced photocurrents are directly used for further calculation in an integrated analog computing chip without the requirement of analog-to-digital converters, leading to a low computing latency of 72 ns for each frame. With joint optimizations of optoelectronic computing and adaptive training, ACCEL achieves competitive classification accuracies of 85.5%, 82.0% and 92.6%, respectively, for Fashion-MNIST, 3-class ImageNet classification and time-lapse video recognition task experimentally, while showing superior system robustness in low-light conditions (0.14 fJ μm −2 each frame). ACCEL can be used across a broad range of applications such as wearable devices, autonomous driving and industrial inspections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁赴湘完成签到 ,获得积分10
10秒前
MchemG应助科研通管家采纳,获得10
14秒前
MchemG应助科研通管家采纳,获得10
14秒前
MchemG应助科研通管家采纳,获得10
14秒前
执着艳完成签到 ,获得积分10
19秒前
嘻嘻完成签到,获得积分10
37秒前
seven完成签到,获得积分10
1分钟前
seven发布了新的文献求助10
1分钟前
1分钟前
yang发布了新的文献求助10
1分钟前
1分钟前
az发布了新的文献求助10
1分钟前
野性的炳完成签到,获得积分10
1分钟前
1分钟前
1分钟前
九五式自动步枪完成签到,获得积分10
1分钟前
az完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Otter完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
优美香露发布了新的文献求助80
3分钟前
3分钟前
丘比特应助学术悍匪采纳,获得10
3分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
林子鸿完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
学术悍匪发布了新的文献求助10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
幽默的绝悟完成签到,获得积分10
4分钟前
4分钟前
acd发布了新的文献求助10
4分钟前
天天快乐应助acd采纳,获得10
5分钟前
x夏天完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658010
求助须知:如何正确求助?哪些是违规求助? 4815993
关于积分的说明 15080791
捐赠科研通 4816301
什么是DOI,文献DOI怎么找? 2577280
邀请新用户注册赠送积分活动 1532288
关于科研通互助平台的介绍 1490890