Improving Image Captioning with Feature Filtering and Injection

隐藏字幕 计算机科学 杠杆(统计) 人工智能 利用 水准点(测量) 可视化 滤波器(信号处理) 图像(数学) 背景(考古学) 计算机视觉 模式识别(心理学) 机器学习 古生物学 生物 计算机安全 地理 大地测量学
作者
Meng-Hao Guo,Qiaohong Chen,Xian Fang,Jia Bao,Shenxiang Xiang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 373-384
标识
DOI:10.1007/978-3-031-44210-0_30
摘要

Image captioning represents a challenging multimodal task, requiring the generation of corresponding textual descriptions for complex input images. Existing methods usually leverage object detectors to extract visual features of images, and thus utilize text generators for learning. However, the features extracted by these methods lack focus and tend to ignore the relationship between objects and background information. To solve the aforementioned problems, we exploit both region features and grid features of the image to fully leverage the information encapsulated within the images. Specifically, we first propose an Object Filter Module (OFM) to extract the primary visual objects. Furthermore, we introduce a Global Injection Cross Attention (GICA) to inject the global context of the image into the filtered primary objects. The experimental results substantiate the efficacy of our model. Our model’s effectiveness and immense potential have been demonstrated through extensive experimentation on the widely-used benchmark COCO dataset. It outperforms previous methods on the image captioning task, achieving a CIDEr score of 136.1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
龙龙宝宝发布了新的文献求助10
刚刚
思源应助nihao采纳,获得10
刚刚
刚刚
liu完成签到 ,获得积分10
1秒前
1秒前
ding应助神勇的语梦采纳,获得10
1秒前
甜甜的满天完成签到,获得积分10
1秒前
itharmony应助yyx采纳,获得10
2秒前
kljlk完成签到,获得积分20
2秒前
赵敏完成签到,获得积分20
2秒前
chen发布了新的文献求助10
2秒前
DS完成签到,获得积分20
2秒前
才下眉头发布了新的文献求助10
2秒前
2秒前
wuti发布了新的文献求助20
2秒前
神啊救救我吧完成签到,获得积分10
3秒前
3秒前
李清竹发布了新的文献求助10
4秒前
神奇宝贝完成签到,获得积分10
4秒前
小福贵发布了新的文献求助10
4秒前
蛋宝发布了新的文献求助10
4秒前
李英俊发布了新的文献求助10
4秒前
小熊锯木头完成签到,获得积分20
4秒前
卡皮巴拉完成签到,获得积分10
5秒前
Orange应助执着蓝采纳,获得10
5秒前
chu发布了新的文献求助10
5秒前
城市公园完成签到,获得积分10
5秒前
6秒前
菜鸟完成签到,获得积分10
7秒前
林北bei完成签到,获得积分10
7秒前
123应助amupf采纳,获得10
7秒前
7秒前
Miracle完成签到,获得积分10
8秒前
Yolo发布了新的文献求助10
8秒前
青柠完成签到 ,获得积分10
8秒前
yu完成签到,获得积分10
9秒前
9秒前
完美念文发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624193
求助须知:如何正确求助?哪些是违规求助? 4710059
关于积分的说明 14949218
捐赠科研通 4778004
什么是DOI,文献DOI怎么找? 2553171
邀请新用户注册赠送积分活动 1515043
关于科研通互助平台的介绍 1475458