Classification of Surgical Patients Needing Preoperative Cardiac Evaluations: A Comparison of General-Purpose and Domain-Specific Large Language Models (Preprint)

杠杆(统计) 医学 接收机工作特性 召回 F1得分 考试(生物学) 任务(项目管理) 自然语言处理 医学物理学 内科学 人工智能 计算机科学 心理学 认知心理学 古生物学 经济 管理 生物
作者
Jeffrey Tully,Onkar Litake,Minhthy N. Meineke,Sierra Simpson,Ruth S. Waterman,Rodney A. Gabriel
标识
DOI:10.2196/preprints.52975
摘要

BACKGROUND Tools that can help to identify preoperative patients in need of further cardiovascular testing or consultation may be of use in reducing costs and ensuring rational utilization of resources. OBJECTIVE We evaluate the feasibility of utilizing general purpose versus domain-specific large language models (LLM) for a classification task aimed at identifying these surgical patients. METHODS The objective of this study was to leverage various LLMs to classify patients that would need preoperative cardiac evaluation based on their preoperative clinical notes. General-purpose (BERT, RoBERTa, Longformer) and domain-specific (BioClinicalBERT, PubMedBERT) were used to train on this classification task. Performance was validated on the test set and the area under the receiver operating characteristics curve (AUC), F1-score, sensitivity, specificity, precision, and recall were measured. RESULTS There were 175 patients, in which 67 (38.2%) patients were determined to require preoperative cardiac evaluation/testing. The dataset was divided into a training and test set, which consisted of 75% (n=131) and 25% (n=44) of the dataset. All models performed similarly, in which the AUC was highest with Longformer (0.90) and the Precision-Recall score was highest with PubMedBERT (0.88). CONCLUSIONS This study described the use of three general purpose and two domain-specific LLMs to classify surgical patients in need of preoperative cardiovascular workup. All LLMs had excellent yet similar performance. LLMs may be leveraged on preoperative clinical notes to classify which patients would benefit from preoperative cardiology evaluations. No clinically significant differences were seen between domain-specific and general-purpose LLMs. CLINICALTRIAL


科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助等下采纳,获得10
1秒前
azazduuuuuu发布了新的文献求助10
1秒前
优秀的亿先完成签到,获得积分10
2秒前
3秒前
热泪盈眶完成签到,获得积分10
4秒前
杨氏发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
冲冲冲完成签到,获得积分10
7秒前
李爱国应助ranj采纳,获得10
7秒前
大个应助吕大喵采纳,获得10
8秒前
9秒前
9秒前
azazduuuuuu完成签到,获得积分10
9秒前
10秒前
TT发布了新的文献求助10
10秒前
KYW发布了新的文献求助30
11秒前
lalala发布了新的文献求助10
12秒前
小二郎应助方格子采纳,获得10
13秒前
性温雅完成签到 ,获得积分10
13秒前
小鱼儿轩发布了新的文献求助10
13秒前
bkagyin应助迷你的薯片采纳,获得10
13秒前
zyc1111111完成签到,获得积分10
14秒前
14秒前
我要发Nture完成签到 ,获得积分10
15秒前
长安完成签到,获得积分10
16秒前
BOLIN完成签到,获得积分10
16秒前
16秒前
琪琪发布了新的文献求助10
16秒前
昨夜星辰完成签到,获得积分10
19秒前
顾矜应助ju龙哥采纳,获得10
20秒前
ff发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
23秒前
大模型应助aishuye采纳,获得10
25秒前
26秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340351
求助须知:如何正确求助?哪些是违规求助? 2968384
关于积分的说明 8633457
捐赠科研通 2647933
什么是DOI,文献DOI怎么找? 1449886
科研通“疑难数据库(出版商)”最低求助积分说明 671575
邀请新用户注册赠送积分活动 660594