Classification of Surgical Patients Needing Preoperative Cardiac Evaluations: A Comparison of General-Purpose and Domain-Specific Large Language Models (Preprint)

杠杆(统计) 医学 接收机工作特性 召回 F1得分 考试(生物学) 任务(项目管理) 自然语言处理 医学物理学 内科学 人工智能 计算机科学 心理学 认知心理学 古生物学 经济 管理 生物
作者
Jeffrey Tully,Onkar Litake,Minhthy N. Meineke,Sierra Simpson,Ruth S. Waterman,Rodney A. Gabriel
标识
DOI:10.2196/preprints.52975
摘要

BACKGROUND Tools that can help to identify preoperative patients in need of further cardiovascular testing or consultation may be of use in reducing costs and ensuring rational utilization of resources. OBJECTIVE We evaluate the feasibility of utilizing general purpose versus domain-specific large language models (LLM) for a classification task aimed at identifying these surgical patients. METHODS The objective of this study was to leverage various LLMs to classify patients that would need preoperative cardiac evaluation based on their preoperative clinical notes. General-purpose (BERT, RoBERTa, Longformer) and domain-specific (BioClinicalBERT, PubMedBERT) were used to train on this classification task. Performance was validated on the test set and the area under the receiver operating characteristics curve (AUC), F1-score, sensitivity, specificity, precision, and recall were measured. RESULTS There were 175 patients, in which 67 (38.2%) patients were determined to require preoperative cardiac evaluation/testing. The dataset was divided into a training and test set, which consisted of 75% (n=131) and 25% (n=44) of the dataset. All models performed similarly, in which the AUC was highest with Longformer (0.90) and the Precision-Recall score was highest with PubMedBERT (0.88). CONCLUSIONS This study described the use of three general purpose and two domain-specific LLMs to classify surgical patients in need of preoperative cardiovascular workup. All LLMs had excellent yet similar performance. LLMs may be leveraged on preoperative clinical notes to classify which patients would benefit from preoperative cardiology evaluations. No clinically significant differences were seen between domain-specific and general-purpose LLMs. CLINICALTRIAL


科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
7秒前
量子星尘发布了新的文献求助30
9秒前
荔枝吖发布了新的文献求助10
10秒前
13秒前
jiuge完成签到 ,获得积分10
13秒前
鸡爪子关注了科研通微信公众号
13秒前
14秒前
15秒前
樛木完成签到 ,获得积分10
17秒前
婷婷发布了新的文献求助10
17秒前
17秒前
17秒前
乐乐应助追忆采纳,获得10
17秒前
banban完成签到 ,获得积分10
18秒前
rilin发布了新的文献求助10
20秒前
NoobMasterZYF发布了新的文献求助10
20秒前
yang发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
23秒前
小马甲应助温柔的海安采纳,获得10
24秒前
优雅的沛春完成签到 ,获得积分10
26秒前
x971017完成签到,获得积分10
26秒前
27秒前
lily发布了新的文献求助10
27秒前
乖猫要努力应助李锐采纳,获得10
28秒前
ddj完成签到 ,获得积分10
28秒前
斯文明杰发布了新的文献求助10
28秒前
28秒前
More完成签到,获得积分20
29秒前
婷婷完成签到,获得积分10
29秒前
32秒前
YDX发布了新的文献求助10
32秒前
CipherSage应助SJY采纳,获得10
33秒前
NoobMasterZYF完成签到,获得积分10
33秒前
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824