Predictive factors of medium-giant coronary artery aneurysms in Kawasaki disease

川崎病 血沉 医学 逻辑回归 内科学 胃肠病学 血小板 动脉
作者
Sanyuan Jiang,Meng Li,Kailin Xu,Ying Xie,Piaohong Liang,Cong Liu,Qiru Su,Boning Li
出处
期刊:Pediatric Research [Springer Nature]
标识
DOI:10.1038/s41390-023-02798-6
摘要

Abstract Background We aimed to examine predictive measures for medium and giant coronary artery aneurysms (CAA) in Kawasaki disease (KD) patients. Methods Patients who were diagnosed with KD from 2015 to 2021 were retrospectively reviewed. The clinical and laboratory data were compared between medium-giant group and non-medium-giant group. Results A total of 1331 KD patients were investigated, of whom 63 patients (4.7%) developed medium-giant CAA including 27 patients (2%) with giant CAA. Sex, age, fever duration, intravenous immunoglobulin (IVIG) resistance, platelet count, and albumin level independently predicted medium or giant CAA by multivariate logistic regression analysis. Male, age, duration of fever, IVIG resistance, platelet count, hemoglobin, and erythrocyte sedimentation rate were independent predictors for giant CAA. The two new scoring systems using these factors in identifying patients with medium-giant CAA and giant CAA had respectively sensitivities of 86.89% and 92.59%, and specificities of 81.65% and 87.93%. Validation in 2021 dataset (193 KD patients) showed comparable sensitivity and specificity to development dataset. Conclusions Male, age, fever duration, IVIG resistance, platelet count, albumin, hemoglobin, and erythrocyte sedimentation rate might be significant predictors of medium and giant CAA. The sensitivity and specificity in our risk prediction model were higher than in previous research. Impact This is the first study to search for risk factors and establish a prediction model for the development of medium-giant CAA in the Chinese population using z-scores and absolute inner diameter values based on large sample sizes. The sensitivity and specificity in our model were higher than in previous studies. Our research could help clinicians better predict medium-giant CAA and choose more appropriate treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘晓璐完成签到,获得积分10
1秒前
平淡的忆之完成签到,获得积分10
1秒前
kvning完成签到,获得积分10
1秒前
Li完成签到,获得积分10
1秒前
段仁杰完成签到,获得积分10
2秒前
saluo完成签到,获得积分10
2秒前
2秒前
Anderson123完成签到,获得积分0
2秒前
2秒前
2秒前
哟梦完成签到,获得积分10
2秒前
喵喵发布了新的文献求助10
2秒前
开心蛋挞发布了新的文献求助30
2秒前
ZHOUCHENG完成签到,获得积分0
2秒前
3秒前
Anderson732完成签到,获得积分10
3秒前
今后应助kk采纳,获得30
4秒前
lcj1014发布了新的文献求助10
4秒前
彩虹捕手发布了新的文献求助10
4秒前
无尽夏完成签到,获得积分10
5秒前
galioo3000发布了新的文献求助10
5秒前
5秒前
chenhouhan发布了新的文献求助10
6秒前
学习鱼发布了新的文献求助10
6秒前
6秒前
6秒前
杜王超完成签到,获得积分20
6秒前
7秒前
8秒前
爱吃氯丙嗪完成签到,获得积分10
8秒前
乐乐应助薇薇采纳,获得30
8秒前
9秒前
zjqfree完成签到,获得积分10
9秒前
橙子发布了新的文献求助10
9秒前
9秒前
有梦想的人不睡觉完成签到,获得积分10
9秒前
田様应助yuzhou采纳,获得10
10秒前
10秒前
StandardR完成签到,获得积分10
10秒前
好吗好的应助123456采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271