亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive factors of medium-giant coronary artery aneurysms in Kawasaki disease

川崎病 血沉 医学 逻辑回归 内科学 胃肠病学 血小板 动脉
作者
Sanyuan Jiang,Meng Li,Kailin Xu,Ying Xie,Piaohong Liang,Cong Liu,Qiru Su,Boning Li
出处
期刊:Pediatric Research [Springer Nature]
标识
DOI:10.1038/s41390-023-02798-6
摘要

Abstract Background We aimed to examine predictive measures for medium and giant coronary artery aneurysms (CAA) in Kawasaki disease (KD) patients. Methods Patients who were diagnosed with KD from 2015 to 2021 were retrospectively reviewed. The clinical and laboratory data were compared between medium-giant group and non-medium-giant group. Results A total of 1331 KD patients were investigated, of whom 63 patients (4.7%) developed medium-giant CAA including 27 patients (2%) with giant CAA. Sex, age, fever duration, intravenous immunoglobulin (IVIG) resistance, platelet count, and albumin level independently predicted medium or giant CAA by multivariate logistic regression analysis. Male, age, duration of fever, IVIG resistance, platelet count, hemoglobin, and erythrocyte sedimentation rate were independent predictors for giant CAA. The two new scoring systems using these factors in identifying patients with medium-giant CAA and giant CAA had respectively sensitivities of 86.89% and 92.59%, and specificities of 81.65% and 87.93%. Validation in 2021 dataset (193 KD patients) showed comparable sensitivity and specificity to development dataset. Conclusions Male, age, fever duration, IVIG resistance, platelet count, albumin, hemoglobin, and erythrocyte sedimentation rate might be significant predictors of medium and giant CAA. The sensitivity and specificity in our risk prediction model were higher than in previous research. Impact This is the first study to search for risk factors and establish a prediction model for the development of medium-giant CAA in the Chinese population using z-scores and absolute inner diameter values based on large sample sizes. The sensitivity and specificity in our model were higher than in previous studies. Our research could help clinicians better predict medium-giant CAA and choose more appropriate treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
19秒前
29秒前
犬来八荒发布了新的文献求助10
29秒前
simple1完成签到 ,获得积分10
33秒前
40秒前
41秒前
42秒前
脑洞疼应助科研通管家采纳,获得10
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
Cherry发布了新的文献求助10
49秒前
charih完成签到 ,获得积分10
50秒前
54秒前
CodeCraft应助犬来八荒采纳,获得10
57秒前
1分钟前
1分钟前
ding应助小橘子吃傻子采纳,获得10
1分钟前
1分钟前
Tania完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
辉辉应助科研通管家采纳,获得10
2分钟前
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
wanci应助Tingshuo采纳,获得10
3分钟前
3分钟前
3分钟前
Future完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091