Predictive factors of medium-giant coronary artery aneurysms in Kawasaki disease

川崎病 血沉 医学 逻辑回归 内科学 胃肠病学 血小板 动脉
作者
Sanyuan Jiang,Meng Li,Kailin Xu,Ying Xie,Piaohong Liang,Cong Liu,Qiru Su,Boning Li
出处
期刊:Pediatric Research [Springer Nature]
标识
DOI:10.1038/s41390-023-02798-6
摘要

Abstract Background We aimed to examine predictive measures for medium and giant coronary artery aneurysms (CAA) in Kawasaki disease (KD) patients. Methods Patients who were diagnosed with KD from 2015 to 2021 were retrospectively reviewed. The clinical and laboratory data were compared between medium-giant group and non-medium-giant group. Results A total of 1331 KD patients were investigated, of whom 63 patients (4.7%) developed medium-giant CAA including 27 patients (2%) with giant CAA. Sex, age, fever duration, intravenous immunoglobulin (IVIG) resistance, platelet count, and albumin level independently predicted medium or giant CAA by multivariate logistic regression analysis. Male, age, duration of fever, IVIG resistance, platelet count, hemoglobin, and erythrocyte sedimentation rate were independent predictors for giant CAA. The two new scoring systems using these factors in identifying patients with medium-giant CAA and giant CAA had respectively sensitivities of 86.89% and 92.59%, and specificities of 81.65% and 87.93%. Validation in 2021 dataset (193 KD patients) showed comparable sensitivity and specificity to development dataset. Conclusions Male, age, fever duration, IVIG resistance, platelet count, albumin, hemoglobin, and erythrocyte sedimentation rate might be significant predictors of medium and giant CAA. The sensitivity and specificity in our risk prediction model were higher than in previous research. Impact This is the first study to search for risk factors and establish a prediction model for the development of medium-giant CAA in the Chinese population using z-scores and absolute inner diameter values based on large sample sizes. The sensitivity and specificity in our model were higher than in previous studies. Our research could help clinicians better predict medium-giant CAA and choose more appropriate treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mmol发布了新的文献求助10
1秒前
xiuuu完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
充电宝应助彩色海冬采纳,获得10
1秒前
乐乐应助我爱帆帆采纳,获得10
1秒前
科研通AI6应助周末万岁采纳,获得10
2秒前
2秒前
2秒前
充电宝应助花楹采纳,获得10
2秒前
橙教授发布了新的文献求助10
3秒前
凭什么完成签到,获得积分10
3秒前
忐忑的烤鸡完成签到,获得积分10
3秒前
小池完成签到,获得积分10
4秒前
精明一寡完成签到,获得积分10
4秒前
4秒前
上官若男应助神勇若雁采纳,获得10
4秒前
4秒前
阿胡发布了新的文献求助10
4秒前
bewnfyibwuyi发布了新的文献求助10
4秒前
科研通AI6应助Gloven采纳,获得30
4秒前
orixero应助寒月如雪采纳,获得10
4秒前
永远55度完成签到,获得积分10
5秒前
谦让的仇血完成签到,获得积分10
5秒前
深情安青应助血小板采纳,获得10
5秒前
6秒前
6秒前
情怀应助简单馒头采纳,获得10
6秒前
7秒前
gggghhhh发布了新的文献求助10
7秒前
永远55度发布了新的文献求助10
7秒前
默默幼南完成签到,获得积分10
8秒前
今天没有雨完成签到,获得积分10
8秒前
8秒前
潇涯应助想学习采纳,获得10
9秒前
科研通AI6应助mmol采纳,获得10
10秒前
lancelot完成签到,获得积分10
10秒前
热心的凡之完成签到,获得积分10
11秒前
11秒前
y1j发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531325
求助须知:如何正确求助?哪些是违规求助? 4620210
关于积分的说明 14572130
捐赠科研通 4559739
什么是DOI,文献DOI怎么找? 2498562
邀请新用户注册赠送积分活动 1478528
关于科研通互助平台的介绍 1449968