亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CLHHN: Category-aware Lossless Heterogeneous Hypergraph Neural Network for Session-based Recommendation

计算机科学 超图 会话(web分析) 成对比较 无损压缩 理论计算机科学 人工神经网络 关系(数据库) 数据挖掘 情报检索 人工智能 机器学习 万维网 数据压缩 数学 离散数学
作者
Yutao Ma,Wang Ze-sheng,Liwei Huang,Jian Wang
出处
期刊:ACM Transactions on The Web [Association for Computing Machinery]
卷期号:18 (1): 1-37 被引量:2
标识
DOI:10.1145/3626569
摘要

In recent years, session-based recommendation (SBR), which seeks to predict the target user’s next click based on anonymous interaction sequences, has drawn increasing interest for its practicality. The key to completing the SBR task is modeling user intent accurately. Due to the popularity of graph neural networks (GNNs), most state-of-the-art (SOTA) SBR approaches attempt to model user intent from the transitions among items in a session with GNNs. Despite their accomplishments, there are still two limitations. First, most existing SBR approaches utilize limited information from short user–item interaction sequences and suffer from the data sparsity problem of session data. Second, most GNN-based SBR approaches describe pairwise relations between items while neglecting complex and high-order data relations. Although some recent studies based on hypergraph neural networks have been proposed to model complex and high-order relations, they usually output unsatisfactory results due to insufficient relation modeling and information loss. To this end, we propose a category-aware lossless heterogeneous hypergraph neural network (CLHHN) in this article to recommend possible items to the target users by leveraging the category of items. More specifically, we convert each category-aware session sequence with repeated user clicks into a lossless heterogeneous hypergraph consisting of item and category nodes as well as three types of hyperedges, each of which can capture specific relations to reflect various user intents. Then, we design an attention-based lossless hypergraph convolutional network to generate sessionwise and multi-granularity intent-aware item representations. Experiments on three real-world datasets indicate that CLHHN can outperform the SOTA models in making a better tradeoff between prediction performance and training efficiency. An ablation study also demonstrates the necessity of CLHHN’s key components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Ying发布了新的文献求助10
9秒前
俊逸沛菡完成签到 ,获得积分10
25秒前
言言言言完成签到,获得积分20
26秒前
大虾发布了新的文献求助30
29秒前
31秒前
34秒前
36秒前
艺涵发布了新的文献求助10
39秒前
lin.xy完成签到,获得积分10
44秒前
带虾的烧麦完成签到,获得积分10
45秒前
勤恳冰淇淋完成签到 ,获得积分10
58秒前
柯善鹏发布了新的文献求助10
1分钟前
a7662888发布了新的文献求助30
1分钟前
Boffican完成签到,获得积分20
1分钟前
a7662888完成签到,获得积分0
1分钟前
1分钟前
1分钟前
李李发布了新的文献求助10
1分钟前
李李完成签到,获得积分20
1分钟前
ymr完成签到 ,获得积分10
2分钟前
2分钟前
仔wang完成签到,获得积分10
2分钟前
烟花应助李李采纳,获得10
2分钟前
呵呵发布了新的文献求助10
2分钟前
不能随便完成签到,获得积分10
2分钟前
清脆的绮梅完成签到 ,获得积分20
2分钟前
lorentzh完成签到,获得积分10
2分钟前
呵呵完成签到 ,获得积分10
2分钟前
威武灵阳完成签到,获得积分10
2分钟前
谨慎的友安完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
木子木发布了新的文献求助10
2分钟前
2分钟前
星辰大海应助粗心的新之采纳,获得10
2分钟前
zy95282应助13采纳,获得30
2分钟前
999完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994995
求助须知:如何正确求助?哪些是违规求助? 3535103
关于积分的说明 11267066
捐赠科研通 3274866
什么是DOI,文献DOI怎么找? 1806498
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809764