CLHHN: Category-aware Lossless Heterogeneous Hypergraph Neural Network for Session-based Recommendation

计算机科学 超图 会话(web分析) 成对比较 无损压缩 理论计算机科学 人工神经网络 关系(数据库) 数据挖掘 情报检索 人工智能 机器学习 万维网 数据压缩 数学 离散数学
作者
Yutao Ma,Wang Ze-sheng,Liwei Huang,Jian Wang
出处
期刊:ACM Transactions on The Web [Association for Computing Machinery]
卷期号:18 (1): 1-37 被引量:2
标识
DOI:10.1145/3626569
摘要

In recent years, session-based recommendation (SBR), which seeks to predict the target user’s next click based on anonymous interaction sequences, has drawn increasing interest for its practicality. The key to completing the SBR task is modeling user intent accurately. Due to the popularity of graph neural networks (GNNs), most state-of-the-art (SOTA) SBR approaches attempt to model user intent from the transitions among items in a session with GNNs. Despite their accomplishments, there are still two limitations. First, most existing SBR approaches utilize limited information from short user–item interaction sequences and suffer from the data sparsity problem of session data. Second, most GNN-based SBR approaches describe pairwise relations between items while neglecting complex and high-order data relations. Although some recent studies based on hypergraph neural networks have been proposed to model complex and high-order relations, they usually output unsatisfactory results due to insufficient relation modeling and information loss. To this end, we propose a category-aware lossless heterogeneous hypergraph neural network (CLHHN) in this article to recommend possible items to the target users by leveraging the category of items. More specifically, we convert each category-aware session sequence with repeated user clicks into a lossless heterogeneous hypergraph consisting of item and category nodes as well as three types of hyperedges, each of which can capture specific relations to reflect various user intents. Then, we design an attention-based lossless hypergraph convolutional network to generate sessionwise and multi-granularity intent-aware item representations. Experiments on three real-world datasets indicate that CLHHN can outperform the SOTA models in making a better tradeoff between prediction performance and training efficiency. An ablation study also demonstrates the necessity of CLHHN’s key components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助苏78采纳,获得10
1秒前
快乐的伟诚完成签到,获得积分10
2秒前
如故完成签到,获得积分10
3秒前
整齐星月发布了新的文献求助10
3秒前
打个酱油发布了新的文献求助10
3秒前
Wangshengnan完成签到,获得积分20
7秒前
狂野的念波完成签到,获得积分10
11秒前
CipherSage应助铁布衫金钟罩采纳,获得10
12秒前
13秒前
MINMIN完成签到,获得积分10
13秒前
mgg完成签到,获得积分10
13秒前
14秒前
sky完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
dongkaimi发布了新的文献求助10
18秒前
李金奥完成签到 ,获得积分10
18秒前
sky发布了新的文献求助20
19秒前
19秒前
WOLF发布了新的文献求助10
20秒前
SciGPT应助ira采纳,获得10
21秒前
21秒前
22秒前
香蕉觅云应助KingLancet采纳,获得10
22秒前
Orange应助周末万岁采纳,获得10
25秒前
自然紫山完成签到,获得积分10
25秒前
25秒前
打个酱油完成签到,获得积分10
26秒前
26秒前
lia发布了新的文献求助10
26秒前
27秒前
28秒前
28秒前
空中风也完成签到,获得积分10
31秒前
31秒前
32秒前
清韵随笔发布了新的文献求助10
32秒前
丫丫关注了科研通微信公众号
32秒前
虚幻的安柏完成签到 ,获得积分10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258254
求助须知:如何正确求助?哪些是违规求助? 2900041
关于积分的说明 8308652
捐赠科研通 2569242
什么是DOI,文献DOI怎么找? 1395597
科研通“疑难数据库(出版商)”最低求助积分说明 653130
邀请新用户注册赠送积分活动 631049