Pulmonary nodule detection based on model fusion and adaptive false positive reduction

计算机科学 结核(地质) 人工智能 假阳性率 还原(数学) 模式识别(心理学) 卷积神经网络 融合 公制(单位) 跳跃式监视 阶段(地层学) 数学 古生物学 语言学 哲学 运营管理 几何学 经济 生物
作者
Yixin Xiong,Lei Deng,Yujuan Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121890-121890 被引量:3
标识
DOI:10.1016/j.eswa.2023.121890
摘要

Lung cancer is the leading cause of cancer death worldwide, and most patients are diagnosed with advanced stages for lack of symptoms in the early stages of the disease, leading to poor prognosis. Thus, it is an urgent need to propose an accurate and fast pulmonary nodule detection network. In this paper, a model fusion based 2.5D pulmonary nodule detection network is proposed. In the first stage, the Weight Box Fusion (WBF) algorithm is introduced to make a fusion of the nodule candidates proposed by two mighty detection networks and yield a more accurate bounding box of nodule candidates. This is to determine the adaptive rate of the false positive reduction stage. The downside of model fusion is that it would generate many false positive candidates. So in the second stage, an adaptive 3D Convolutional Neural Network (CNN) architecture is designed to reduce the false positive candidates. The architecture can adjust the weights of soft assignment according to the diameter of nodules. By the experimental results on publicly available LUNA16, it demonstrates that 97.4% sensitivity can be obtained with an average of only 9.67 candidates per scan in our work that can compete with the state-of-the-art (SOTA) works. Besides, a 0.965 competition performance metric (CPM) is obtained on LUN16 and SOTA results from 1/8 to 1 FPs/Scan, which greatly outperforms other existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
大姿兰卡眼睛完成签到 ,获得积分10
2秒前
3秒前
3秒前
Chenly发布了新的文献求助10
3秒前
北风语完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
xiongyh10发布了新的文献求助10
4秒前
zk关闭了zk文献求助
5秒前
5秒前
BJL发布了新的文献求助10
5秒前
5秒前
LF完成签到 ,获得积分10
5秒前
coco发布了新的文献求助10
5秒前
6秒前
6秒前
传奇3应助科研工作者采纳,获得10
6秒前
可爱的函函应助Yixin_Niu采纳,获得10
7秒前
7秒前
7秒前
yellowflash发布了新的文献求助10
7秒前
笑对人生关注了科研通微信公众号
7秒前
Akim应助奔跑的棉花采纳,获得10
8秒前
苗条的语海完成签到,获得积分10
8秒前
8秒前
搜集达人应助欣慰的妙菱采纳,获得30
8秒前
科研通AI2S应助Eina采纳,获得10
8秒前
砡君应助xiaoyan采纳,获得10
8秒前
yld发布了新的文献求助10
8秒前
搜集达人应助专注的问筠采纳,获得10
8秒前
8秒前
maytang发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
ruqinmq完成签到,获得积分10
9秒前
锕系第八元素完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894