Deep Multi-dictionary Learning for Survival Prediction with Multi-zoom Histopathological Whole Slide Images

判别式 人工智能 计算机科学 深度学习 缩放 机器学习 修剪 模式识别(心理学) 比例(比率) 地图学 生物 古生物学 农学 镜头(地质) 地理
作者
Chao Tu,Denghui Du,Tieyong Zeng,Yu Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 14-25 被引量:1
标识
DOI:10.1109/tcbb.2023.3321593
摘要

Survival prediction based on histopathological whole slide images (WSIs) is of great significance for risk-benefit assessment and clinical decision. However, complex microenvironments and heterogeneous tissue structures in WSIs bring challenges to learning informative prognosis-related representations. Additionally, previous studies mainly focus on modeling using mono-scale WSIs, which commonly ignore useful subtle differences existed in multi-zoom WSIs. To this end, we propose a deep multi-dictionary learning framework for cancer survival prediction with multi-zoom histopathological WSIs. The framework can recognize and learn discriminative clusters (i.e., microenvironments) based on multi-scale deep representations for survival analysis. Specifically, we learn multi-scale features based on multi-zoom tiles from WSIs via stacked deep autoencoders network followed by grouping different microenvironments by cluster algorithm. Based on multi-scale deep features of clusters, a multi-dictionary learning method with a post-pruning strategy is devised to learn discriminative representations from selected prognosis-related clusters in a task-driven manner. Finally, a survival model (i.e., EN-Cox) is constructed to estimate the risk index of an individual patient. The proposed model is evaluated on three datasets derived from The Cancer Genome Atlas (TCGA), and the experimental results demonstrate that it outperforms several state-of-the-art survival analysis approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuejian发布了新的文献求助10
刚刚
成就的凡松完成签到,获得积分10
刚刚
领导范儿应助wwm采纳,获得10
1秒前
陈昱哲发布了新的文献求助10
1秒前
pluto应助稳重的不平采纳,获得30
1秒前
小马甲应助mm采纳,获得10
2秒前
2秒前
17381362015完成签到 ,获得积分10
2秒前
温婉的篮球完成签到,获得积分10
3秒前
psylan应助Chemberry采纳,获得10
4秒前
cpxliteratur完成签到,获得积分10
4秒前
5秒前
6秒前
醉爱星星发布了新的文献求助10
8秒前
SciGPT应助单手开坦克采纳,获得10
8秒前
8秒前
9秒前
渭水飞熊发布了新的文献求助10
10秒前
10秒前
曹年跃完成签到,获得积分10
11秒前
11秒前
努力小周完成签到,获得积分10
12秒前
怕孤单的幼荷完成签到 ,获得积分10
13秒前
任性翩跹发布了新的文献求助10
13秒前
yuejian完成签到,获得积分10
14秒前
15秒前
慕青应助爱蹦跶的废物采纳,获得10
15秒前
吕佳蔚完成签到,获得积分10
18秒前
淡定怜南发布了新的文献求助30
18秒前
18秒前
18秒前
隐形曼青应助吨吨采纳,获得10
19秒前
李爱国应助小小K采纳,获得10
21秒前
22秒前
科研通AI2S应助张zhang采纳,获得10
22秒前
英俊的铭应助研友_LmVygn采纳,获得10
23秒前
965481发布了新的文献求助10
24秒前
24秒前
雨辰完成签到 ,获得积分10
25秒前
思源应助雾山五行采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559994
求助须知:如何正确求助?哪些是违规求助? 4645112
关于积分的说明 14674328
捐赠科研通 4586220
什么是DOI,文献DOI怎么找? 2516312
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841