Deep Multi-dictionary Learning for Survival Prediction with Multi-zoom Histopathological Whole Slide Images

判别式 人工智能 计算机科学 深度学习 缩放 机器学习 修剪 模式识别(心理学) 比例(比率) 地图学 生物 古生物学 农学 镜头(地质) 地理
作者
Chao Tu,Denghui Du,Tieyong Zeng,Yu Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 14-25 被引量:1
标识
DOI:10.1109/tcbb.2023.3321593
摘要

Survival prediction based on histopathological whole slide images (WSIs) is of great significance for risk-benefit assessment and clinical decision. However, complex microenvironments and heterogeneous tissue structures in WSIs bring challenges to learning informative prognosis-related representations. Additionally, previous studies mainly focus on modeling using mono-scale WSIs, which commonly ignore useful subtle differences existed in multi-zoom WSIs. To this end, we propose a deep multi-dictionary learning framework for cancer survival prediction with multi-zoom histopathological WSIs. The framework can recognize and learn discriminative clusters (i.e., microenvironments) based on multi-scale deep representations for survival analysis. Specifically, we learn multi-scale features based on multi-zoom tiles from WSIs via stacked deep autoencoders network followed by grouping different microenvironments by cluster algorithm. Based on multi-scale deep features of clusters, a multi-dictionary learning method with a post-pruning strategy is devised to learn discriminative representations from selected prognosis-related clusters in a task-driven manner. Finally, a survival model (i.e., EN-Cox) is constructed to estimate the risk index of an individual patient. The proposed model is evaluated on three datasets derived from The Cancer Genome Atlas (TCGA), and the experimental results demonstrate that it outperforms several state-of-the-art survival analysis approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HIT_C完成签到 ,获得积分10
刚刚
1秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
1秒前
QYW发布了新的文献求助10
2秒前
qianxie完成签到,获得积分20
2秒前
2秒前
big ben完成签到 ,获得积分10
4秒前
隐形曼青应助huazhangchina采纳,获得10
4秒前
4秒前
Gen_cexon发布了新的文献求助10
5秒前
7秒前
能干砖家完成签到,获得积分10
8秒前
优美巧曼完成签到,获得积分10
8秒前
10秒前
10秒前
mdeguisu发布了新的文献求助10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
罗_应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
罗_应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
jewel9完成签到,获得积分10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
情怀应助巴拉巴拉采纳,获得10
12秒前
gxh66发布了新的文献求助10
13秒前
优美巧曼发布了新的文献求助10
15秒前
Sumlower完成签到,获得积分10
15秒前
咕噜噜发布了新的文献求助10
16秒前
多肉考拉完成签到,获得积分20
16秒前
松子的ee完成签到 ,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023