Deep Multi-dictionary Learning for Survival Prediction with Multi-zoom Histopathological Whole Slide Images

判别式 人工智能 计算机科学 深度学习 缩放 机器学习 修剪 模式识别(心理学) 比例(比率) 地图学 生物 农学 镜头(地质) 古生物学 地理
作者
Chao Tu,Denghui Du,Tieyong Zeng,Yu Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 14-25 被引量:1
标识
DOI:10.1109/tcbb.2023.3321593
摘要

Survival prediction based on histopathological whole slide images (WSIs) is of great significance for risk-benefit assessment and clinical decision. However, complex microenvironments and heterogeneous tissue structures in WSIs bring challenges to learning informative prognosis-related representations. Additionally, previous studies mainly focus on modeling using mono-scale WSIs, which commonly ignore useful subtle differences existed in multi-zoom WSIs. To this end, we propose a deep multi-dictionary learning framework for cancer survival prediction with multi-zoom histopathological WSIs. The framework can recognize and learn discriminative clusters (i.e., microenvironments) based on multi-scale deep representations for survival analysis. Specifically, we learn multi-scale features based on multi-zoom tiles from WSIs via stacked deep autoencoders network followed by grouping different microenvironments by cluster algorithm. Based on multi-scale deep features of clusters, a multi-dictionary learning method with a post-pruning strategy is devised to learn discriminative representations from selected prognosis-related clusters in a task-driven manner. Finally, a survival model (i.e., EN-Cox) is constructed to estimate the risk index of an individual patient. The proposed model is evaluated on three datasets derived from The Cancer Genome Atlas (TCGA), and the experimental results demonstrate that it outperforms several state-of-the-art survival analysis approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神奇宝贝发布了新的文献求助10
1秒前
迪鸣完成签到,获得积分0
1秒前
旧梦发布了新的文献求助10
2秒前
田舒荔发布了新的文献求助20
4秒前
4秒前
自觉的凌青完成签到,获得积分10
4秒前
Ava应助神奇宝贝采纳,获得10
9秒前
糯米糍发布了新的文献求助10
11秒前
加勒比海带丝完成签到,获得积分10
12秒前
ding应助刺槐采纳,获得10
12秒前
光影相生应助Gin采纳,获得10
16秒前
16秒前
16秒前
18秒前
18秒前
Eleanor完成签到,获得积分10
18秒前
褪黑素完成签到,获得积分20
18秒前
19秒前
哈哈恬发布了新的文献求助20
20秒前
21秒前
21秒前
aaaaaa发布了新的文献求助10
22秒前
22秒前
24秒前
打打应助糯米糍采纳,获得10
24秒前
26秒前
怡然凌柏发布了新的文献求助10
27秒前
张二狗完成签到,获得积分10
27秒前
丘比特应助影子采纳,获得10
27秒前
起起完成签到 ,获得积分10
27秒前
28秒前
关关完成签到 ,获得积分10
28秒前
liang_zai完成签到,获得积分10
28秒前
上官若男应助褪黑素采纳,获得30
29秒前
栀璃鸳挽发布了新的文献求助10
32秒前
小波完成签到 ,获得积分10
33秒前
刺槐发布了新的文献求助10
33秒前
35秒前
恋雅颖月发布了新的文献求助10
37秒前
热心市民小红花应助Gin采纳,获得10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962593
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141766
捐赠科研通 3241330
什么是DOI,文献DOI怎么找? 1791510
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803483