Deep Multi-dictionary Learning for Survival Prediction with Multi-zoom Histopathological Whole Slide Images

判别式 人工智能 计算机科学 深度学习 缩放 机器学习 修剪 模式识别(心理学) 比例(比率) 地图学 生物 古生物学 农学 镜头(地质) 地理
作者
Chao Tu,Denghui Du,Tieyong Zeng,Yu Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 14-25 被引量:1
标识
DOI:10.1109/tcbb.2023.3321593
摘要

Survival prediction based on histopathological whole slide images (WSIs) is of great significance for risk-benefit assessment and clinical decision. However, complex microenvironments and heterogeneous tissue structures in WSIs bring challenges to learning informative prognosis-related representations. Additionally, previous studies mainly focus on modeling using mono-scale WSIs, which commonly ignore useful subtle differences existed in multi-zoom WSIs. To this end, we propose a deep multi-dictionary learning framework for cancer survival prediction with multi-zoom histopathological WSIs. The framework can recognize and learn discriminative clusters (i.e., microenvironments) based on multi-scale deep representations for survival analysis. Specifically, we learn multi-scale features based on multi-zoom tiles from WSIs via stacked deep autoencoders network followed by grouping different microenvironments by cluster algorithm. Based on multi-scale deep features of clusters, a multi-dictionary learning method with a post-pruning strategy is devised to learn discriminative representations from selected prognosis-related clusters in a task-driven manner. Finally, a survival model (i.e., EN-Cox) is constructed to estimate the risk index of an individual patient. The proposed model is evaluated on three datasets derived from The Cancer Genome Atlas (TCGA), and the experimental results demonstrate that it outperforms several state-of-the-art survival analysis approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助yangqi采纳,获得10
刚刚
刚刚
诗谙发布了新的文献求助10
刚刚
超人完成签到,获得积分10
1秒前
神勇含桃完成签到,获得积分10
1秒前
精忠报国发布了新的文献求助10
1秒前
东都哈士奇完成签到,获得积分10
2秒前
2秒前
2秒前
sun关注了科研通微信公众号
2秒前
单薄黑米发布了新的文献求助10
2秒前
2秒前
2秒前
雷乾发布了新的文献求助10
2秒前
蹲坑的撕裂者完成签到,获得积分10
2秒前
3秒前
大模型应助果仁采纳,获得15
3秒前
理海飞鹰完成签到,获得积分10
4秒前
别那么晚睡完成签到,获得积分10
4秒前
4秒前
MXL发布了新的文献求助10
4秒前
4秒前
归期发布了新的文献求助10
5秒前
桐桐应助欣喜梦蕊采纳,获得10
5秒前
5秒前
5秒前
5秒前
读研读到发疯关注了科研通微信公众号
5秒前
6秒前
fedehe发布了新的文献求助10
6秒前
6秒前
djx发布了新的文献求助10
6秒前
6秒前
希望天下0贩的0应助forever采纳,获得10
6秒前
可可完成签到,获得积分10
6秒前
孙行行发布了新的文献求助10
6秒前
田様应助仲侣弥月采纳,获得10
6秒前
SG发布了新的文献求助10
7秒前
汉堡肉应助小越越采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707