插层(化学)
纳米结构
材料科学
电流密度
电解
氧化物
氢
电极
化学工程
纳米技术
无机化学
化学
冶金
物理化学
物理
有机化学
量子力学
工程类
电解质
作者
Santosh Semwal,Renna Shakir,J. Karthikeyan,Akhoury Sudhir Kumar Sinha,Umaprasana Ojha
出处
期刊:ACS applied nano materials
[American Chemical Society]
日期:2023-10-06
卷期号:6 (20): 18945-18956
被引量:5
标识
DOI:10.1021/acsanm.3c03438
摘要
Though electrocatalysts displaying efficacy for the hydrogen evolution reaction (HER) or sulfion oxidation reaction (SOR) individually are available in the literature, systems exhibiting proficiency toward the HER and SOR together are desirable to produce H2 in a robustly energy-efficient manner. Furthermore, simultaneous facile growth and intercalation of multiple nanocatalyst systems to achieve the above objective are synthetically challenging. Herewith, the reactivity preferences of Lewis acid (FeCl3) and salt [Co(NO3)2] are utilized to longitudinally grow NiFeOOH-Co9S8-n intercalated nanostructure arrays of varied Fe:Co ratios on Nickel foam using a one-step procedure at low temperature (50 °C). The NiFeOOH-Co9S8-n exhibit bifunctionality and H2 production at a relatively high j value of 1000 mA/cm2 is realized at a low overall potential (SOR + HER) value of 0.84 V in NaOH (1.0 M)-Na2S (1.0 M). The efficiency of the electrode enabled the SOR j value to reach 1000 mA/cm2 at 0.72 V in 1.0 M Na2S solution in the absence of NaOH. The density functional theory analysis revealed that the oxide doping of the Co9S8 facilitated by the FeOOH-Co9S8 intercalation promoted the electrocatalytic activity. The nanocatalyst promotes highly energy-efficient and sustainable H2 production, where a j value of 100 mA/cm2 under the electrolyzer mode is realized at an unprecedented potential of 0.44 V (iR-uncorrected) and ultralow power consumption (11.8 kW h/kg H2), which is minimum among reported systems suggesting its viability toward commercial production of H2 in future.
科研通智能强力驱动
Strongly Powered by AbleSci AI