纳米纤维
化学
食品科学
壳聚糖
保质期
明胶
静电纺丝
结晶度
人口
聚合物
材料科学
纳米技术
有机化学
人口学
社会学
结晶学
作者
Ehsan Mohebi,Maryam Abbasvali,Yasser Shahbazi
标识
DOI:10.1016/j.ijbiomac.2023.127258
摘要
The aims of the current study were to encapsulate Ziziphora clinopodioides essential oil (ZEO, 0%, 0.15%, and 0.25%) and Heracleum persicum extract (HPE, 0%, 0.25%, and 0.5%) into the chitosan-gelatin (CH-GE) nanofibers through the electrospinning process to improve the shelf-life of vacuum-cooked beef sausages through 70 days of refrigerated storage. Scanning electron microscopy indicated that all nanofibers appeared thin, well-defined, smooth, and possessed uniform thread-like fibers without any beads or nodule formations. The Fourier transform infrared spectroscopy study confirmed the molecular interaction between encapsulated compounds and CH-GE nanofibers. The X-ray diffraction analysis of nanofibers showed an increase in crystallinity after incorporating ZEO and HPE into the polymer. Treated sausages with CH-GE-ZEO 0.25%-HPE 0.25% and CH-GE-ZEO 0.25%-HPE 0.5% showed significantly lower microbial population and lipid oxidation than the control group during the experiment period (P < 0.05). Sausages formulated with designated CH-GE nanofibers had better microbial, chemical, and sensory properties compared to sausages treated with pure ZEO/HPE during refrigerated storage. The findings also showed that treated sausages with CH-GE-ZEO 0.25%-HPE 0.5% had the highest color, odor, texture, and overall acceptability after 70 days of refrigerated storage conditions. Therefore, this treatment could be applicable for the prolonged storage conditions during cooked beef sausage production.
科研通智能强力驱动
Strongly Powered by AbleSci AI