Precision medicine for cardiometabolic disease: a framework for clinical translation

医学 精密医学 疾病 耐受性 临床试验 替代医学 医疗保健 梅德林 系统医学 队列 个性化医疗 知识翻译 家庭医学 重症监护医学 生物信息学 病理 系统生物学 计算机科学 知识管理 政治学 法学 经济 生物 经济增长
作者
Paul W. Franks,William T. Cefalu,John Dennis,José C. Florez,Chantal Mathieu,Robert W. Morton,Martin Ridderstråle,Henrik Sillesen,Coen D.A. Stehouwer
出处
期刊:The Lancet Diabetes & Endocrinology [Elsevier BV]
卷期号:11 (11): 822-835 被引量:20
标识
DOI:10.1016/s2213-8587(23)00165-1
摘要

Cardiometabolic disease is a major threat to global health. Precision medicine has great potential to help to reduce the burden of this common and complex disease cluster, and to enhance contemporary evidence-based medicine. Its key pillars are diagnostics; prediction (of the primary disease); prevention (of the primary disease); prognosis (prediction of complications of the primary disease); treatment (of the primary disease or its complications); and monitoring (of risk exposure, treatment response, and disease progression or remission). To contextualise precision medicine in both research and clinical settings, and to encourage the successful translation of discovery science into clinical practice, in this Series paper we outline a model (the EPPOS model) that builds on contemporary evidence-based approaches; includes precision medicine that improves disease-related predictions by stratifying a cohort into subgroups of similar characteristics, or using participants' characteristics to model treatment outcomes directly; includes personalised medicine with the use of a person's data to objectively gauge the efficacy, safety, and tolerability of therapeutics; and subjectively tailors medical decisions to the individual's preferences, circumstances, and capabilities. Precision medicine requires a well functioning system comprised of multiple stakeholders, including health-care recipients, health-care providers, scientists, health economists, funders, innovators of medicines and technologies, regulators, and policy makers. Powerful computing infrastructures supporting appropriate analysis of large-scale, well curated, and accessible health databases that contain high-quality, multidimensional, time-series data will be required; so too will prospective cohort studies in diverse populations designed to generate novel hypotheses, and clinical trials designed to test them. Here, we carefully consider these topics and describe a framework for the integration of precision medicine in cardiometabolic disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助DJ_Tokyo采纳,获得30
2秒前
3秒前
3秒前
彼岸发布了新的文献求助10
4秒前
LINHAI发布了新的文献求助10
4秒前
5秒前
星辰大海应助司空豁采纳,获得10
5秒前
6秒前
苹果小虾米完成签到 ,获得积分10
7秒前
七慕凉应助小和采纳,获得10
8秒前
luca应助小和采纳,获得10
8秒前
七慕凉应助小和采纳,获得10
8秒前
朱朱子发布了新的文献求助30
8秒前
9秒前
yyc666发布了新的文献求助10
9秒前
10秒前
雪白的紫翠应助感动书竹采纳,获得20
10秒前
nvwu发布了新的文献求助30
11秒前
2075848253发布了新的文献求助10
13秒前
完美世界应助扣我头上采纳,获得10
13秒前
食分子发布了新的文献求助10
14秒前
14秒前
烟花应助jessie采纳,获得10
15秒前
KKKKKKK完成签到 ,获得积分10
17秒前
18秒前
19秒前
可爱的函函应助食分子采纳,获得10
19秒前
19秒前
yk123发布了新的文献求助10
19秒前
20秒前
缥缈的寄云完成签到,获得积分10
20秒前
lhp完成签到,获得积分10
21秒前
SciGPT应助健壮的夕阳采纳,获得10
22秒前
善学以致用应助岳粤采纳,获得10
22秒前
身为风帆完成签到,获得积分10
23秒前
杨帆发布了新的文献求助10
23秒前
24秒前
完美世界应助自然含羞草采纳,获得10
24秒前
阿会发布了新的文献求助10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A simple yet effective training model for mastering deep bypass procedures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3699545
求助须知:如何正确求助?哪些是违规求助? 3250127
关于积分的说明 9867113
捐赠科研通 2961882
什么是DOI,文献DOI怎么找? 1624284
邀请新用户注册赠送积分活动 769304
科研通“疑难数据库(出版商)”最低求助积分说明 742159