Context-Based Adaptive Multimodal Fusion Network for Continuous Frame-Level Sentiment Prediction

计算机科学 模式 情绪分析 背景(考古学) 人工智能 多模态 机器学习 帧(网络) 一致性(知识库) 语义学(计算机科学) 古生物学 社会科学 电信 社会学 万维网 生物 程序设计语言
作者
Maochun Huang,Chunmei Qing,Junpeng Tan,Xiangmin Xu
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3468-3477 被引量:4
标识
DOI:10.1109/taslp.2023.3321971
摘要

Recently, video sentiment computing has become the focus of research because of its benefits in many applications such as digital marketing, education, healthcare, and so on. The difficulty of video sentiment prediction mainly lies in the regression accuracy of long-term sequences and how to integrate different modalities. In particular, different modalities may express different emotions. In order to maintain the continuity of long time-series sentiments and mitigate the multimodal conflicts, this paper proposes a novel Context-Based Adaptive Multimodal Fusion Network (CAMFNet) for consecutive frame-level sentiment prediction. A Context-based Transformer (CBT) module was specifically designed to embed clip features into continuous frame features, leveraging its capability to enhance the consistency of prediction results. Moreover, to resolve the multi-modal conflict between modalities, this paper proposed an Adaptive multimodal fusion (AMF) method based on the self-attention mechanism. It can dynamically determines the degree of shared semantics across modalities, enabling the model to flexibly adapt its fusion strategy. Through adaptive fusion of multimodal features, the AMF method effectively resolves potential conflicts arising from diverse modalities, ultimately enhancing the overall performance of the model. The proposed CAMFNet for consecutive frame-level sentiment prediction can ensure the continuity of long time-series sentiments. Extensive experiments illustrate the superiority of the proposed method especially in multimodal conflicts videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十字路口完成签到,获得积分10
1秒前
3秒前
领导范儿应助山木采纳,获得10
4秒前
4秒前
5秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
元谷雪应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
转运RNA应助科研通管家采纳,获得10
8秒前
8秒前
回水发布了新的文献求助20
8秒前
淡漠发布了新的文献求助10
8秒前
Polaris发布了新的文献求助10
9秒前
karL发布了新的文献求助10
10秒前
可爱的函函应助俏皮诺言采纳,获得10
10秒前
XiaohuLee完成签到,获得积分10
11秒前
课呢完成签到,获得积分10
12秒前
烟花应助Ricky采纳,获得10
12秒前
12秒前
充电宝应助纯真硬币采纳,获得10
12秒前
自由的刺猬完成签到,获得积分10
13秒前
towanda完成签到,获得积分10
13秒前
无花果应助开心的八宝粥采纳,获得10
14秒前
14秒前
顺心冰淇淋完成签到,获得积分20
15秒前
牛乘风完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128715
求助须知:如何正确求助?哪些是违规求助? 2779520
关于积分的说明 7743611
捐赠科研通 2434839
什么是DOI,文献DOI怎么找? 1293652
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514