已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TFFormer: A Time–Frequency Information Fusion-Based CNN-Transformer Model for OSA Detection With Single-Lead ECG

计算机科学 模式识别(心理学) 人工智能 计算 残余物 特征提取 时频分析 变压器 语音识别 算法 计算机视觉 滤波器(信号处理) 工程类 电压 电气工程
作者
Chengjian Li,Zhenghao Shi,Liang Zhou,Zhijun Zhang,Chen-Wei Wu,Xiaoyong Ren,Xinhong Hei,Minghua Zhao,Yitong Zhang,Haiqin Liu,Zhenzhen You,Lifeng He
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:2
标识
DOI:10.1109/tim.2023.3312472
摘要

Accurate detection of Obstructive Sleep Apnea (OSA) with a single-lead electrocardiogram (ECG) signal is highly desirable for timely treating of OSA patients. However, due to the variance of apneas in appearance and size in ECG signals, it is still a very challenging task to obtain an accurate OSA apnea detection. To address this problem, this paper presents a time frequency information fusion based CNN-Transformer model (TFFormer) for OSA detection with Single-lead ECG. In which, a module consisting of a deep residual shrinkage module, a multi-scale convolutional attention module (MSCA), and a multi-layer convolution module is developed for time-frequency feature extraction. The purpose of this operation is to extract rich features from a short length of ECG signal sequences with a low computation cost. For time-frequency information fusion, to reduce its computation cost, a gated self-attention based adaptive pruning time-frequency information fusion module is developed to prune the redundant tokens. With the attention based adaptive pruning time-frequency information fusion module(APTFFA), the TFFormer is constructed for data parallel processing and long-distance modeling. Compared with the best model in the comparative method, the accuracy of the proposed method was improved by 0.18% in the segmented case, and the mean absolute error was reduced by 0.25 per-recorded case, which demonstrates that the TFFormer model has better OSA detection performance and could provide a convenient and accurate solution for clinical OSA detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
6秒前
TKTATO发布了新的文献求助10
10秒前
12秒前
15秒前
興崋完成签到 ,获得积分10
16秒前
18秒前
Dali完成签到 ,获得积分10
18秒前
18秒前
20秒前
woshizhengde发布了新的文献求助10
21秒前
菲1208完成签到,获得积分10
23秒前
25秒前
朱文韬发布了新的文献求助10
26秒前
赘婿应助PrayOne采纳,获得10
28秒前
King丶惠忍完成签到,获得积分10
28秒前
29秒前
握月担风完成签到,获得积分10
29秒前
Leif完成签到 ,获得积分0
30秒前
wei发布了新的文献求助10
31秒前
科研通AI2S应助陪你长大采纳,获得10
31秒前
希望天下0贩的0应助Kashing采纳,获得30
32秒前
34秒前
41秒前
42秒前
Alicia完成签到 ,获得积分10
42秒前
张张完成签到,获得积分20
43秒前
46秒前
景__完成签到 ,获得积分10
48秒前
张张发布了新的文献求助10
49秒前
wei完成签到,获得积分10
49秒前
51秒前
lulululululu发布了新的文献求助10
54秒前
乐乐应助张张采纳,获得10
55秒前
57秒前
59秒前
奥拉夫完成签到,获得积分10
1分钟前
第七兵团司令完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455593
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022781
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502690
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387