TFFormer: A Time–Frequency Information Fusion-Based CNN-Transformer Model for OSA Detection With Single-Lead ECG

计算机科学 模式识别(心理学) 人工智能 计算 残余物 特征提取 时频分析 变压器 语音识别 算法 计算机视觉 滤波器(信号处理) 工程类 电压 电气工程
作者
Chengjian Li,Zhenghao Shi,Liang Zhou,Zhijun Zhang,Chen-Wei Wu,Xiaoyong Ren,Xinhong Hei,Minghua Zhao,Yitong Zhang,Haiqin Liu,Zhenzhen You,Lifeng He
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:2
标识
DOI:10.1109/tim.2023.3312472
摘要

Accurate detection of Obstructive Sleep Apnea (OSA) with a single-lead electrocardiogram (ECG) signal is highly desirable for timely treating of OSA patients. However, due to the variance of apneas in appearance and size in ECG signals, it is still a very challenging task to obtain an accurate OSA apnea detection. To address this problem, this paper presents a time frequency information fusion based CNN-Transformer model (TFFormer) for OSA detection with Single-lead ECG. In which, a module consisting of a deep residual shrinkage module, a multi-scale convolutional attention module (MSCA), and a multi-layer convolution module is developed for time-frequency feature extraction. The purpose of this operation is to extract rich features from a short length of ECG signal sequences with a low computation cost. For time-frequency information fusion, to reduce its computation cost, a gated self-attention based adaptive pruning time-frequency information fusion module is developed to prune the redundant tokens. With the attention based adaptive pruning time-frequency information fusion module(APTFFA), the TFFormer is constructed for data parallel processing and long-distance modeling. Compared with the best model in the comparative method, the accuracy of the proposed method was improved by 0.18% in the segmented case, and the mean absolute error was reduced by 0.25 per-recorded case, which demonstrates that the TFFormer model has better OSA detection performance and could provide a convenient and accurate solution for clinical OSA detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yiran完成签到,获得积分10
刚刚
刚刚
11完成签到,获得积分10
1秒前
2秒前
shi0331完成签到,获得积分10
3秒前
调皮的代双完成签到 ,获得积分10
3秒前
Jolin完成签到,获得积分10
3秒前
NXZ发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
马家辉完成签到,获得积分10
5秒前
ABC发布了新的文献求助10
5秒前
Sept完成签到,获得积分10
5秒前
小杭76应助todayisirene采纳,获得10
6秒前
科研通AI6应助彩色的盼秋采纳,获得10
7秒前
三水发布了新的文献求助10
8秒前
曾开心发布了新的文献求助10
8秒前
英俊的铭应助火苗采纳,获得10
9秒前
远方如歌完成签到,获得积分10
10秒前
10秒前
啦啦啦啦啦完成签到,获得积分10
10秒前
奋斗含巧完成签到,获得积分10
11秒前
仔仔完成签到,获得积分10
11秒前
领导范儿应助史超采纳,获得10
11秒前
11秒前
13秒前
科研通AI6应助hbhbj采纳,获得10
13秒前
ABC完成签到,获得积分10
13秒前
13秒前
13秒前
三水完成签到,获得积分10
15秒前
充电宝应助Daidai采纳,获得50
16秒前
愉快迎南发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
19秒前
xuan发布了新的文献求助10
22秒前
szf完成签到,获得积分20
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415277
求助须知:如何正确求助?哪些是违规求助? 4531889
关于积分的说明 14130763
捐赠科研通 4447452
什么是DOI,文献DOI怎么找? 2439702
邀请新用户注册赠送积分活动 1431793
关于科研通互助平台的介绍 1409400