TFFormer: A Time–Frequency Information Fusion-Based CNN-Transformer Model for OSA Detection With Single-Lead ECG

计算机科学 模式识别(心理学) 人工智能 计算 残余物 特征提取 时频分析 变压器 语音识别 算法 计算机视觉 滤波器(信号处理) 工程类 电压 电气工程
作者
Chengjian Li,Zhenghao Shi,Liang Zhou,Zhijun Zhang,Chen-Wei Wu,Xiaoyong Ren,Xinhong Hei,Minghua Zhao,Yitong Zhang,Haiqin Liu,Zhenzhen You,Lifeng He
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:2
标识
DOI:10.1109/tim.2023.3312472
摘要

Accurate detection of Obstructive Sleep Apnea (OSA) with a single-lead electrocardiogram (ECG) signal is highly desirable for timely treating of OSA patients. However, due to the variance of apneas in appearance and size in ECG signals, it is still a very challenging task to obtain an accurate OSA apnea detection. To address this problem, this paper presents a time frequency information fusion based CNN-Transformer model (TFFormer) for OSA detection with Single-lead ECG. In which, a module consisting of a deep residual shrinkage module, a multi-scale convolutional attention module (MSCA), and a multi-layer convolution module is developed for time-frequency feature extraction. The purpose of this operation is to extract rich features from a short length of ECG signal sequences with a low computation cost. For time-frequency information fusion, to reduce its computation cost, a gated self-attention based adaptive pruning time-frequency information fusion module is developed to prune the redundant tokens. With the attention based adaptive pruning time-frequency information fusion module(APTFFA), the TFFormer is constructed for data parallel processing and long-distance modeling. Compared with the best model in the comparative method, the accuracy of the proposed method was improved by 0.18% in the segmented case, and the mean absolute error was reduced by 0.25 per-recorded case, which demonstrates that the TFFormer model has better OSA detection performance and could provide a convenient and accurate solution for clinical OSA detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖一达完成签到 ,获得积分10
刚刚
冰魄落叶完成签到,获得积分10
1秒前
玛琳卡迪马完成签到,获得积分10
1秒前
优美的莹芝完成签到,获得积分10
3秒前
李爱国应助Xu采纳,获得10
3秒前
科研通AI6应助顺心的乐天采纳,获得10
3秒前
科研通AI5应助Billy采纳,获得10
4秒前
gms完成签到,获得积分10
4秒前
duoduo完成签到,获得积分10
5秒前
5秒前
应俊完成签到 ,获得积分10
6秒前
精神美丽完成签到,获得积分10
7秒前
肖慧强完成签到,获得积分10
7秒前
areWU完成签到,获得积分10
7秒前
ljw完成签到,获得积分10
7秒前
烟雨平生完成签到,获得积分10
8秒前
2012csc完成签到 ,获得积分0
8秒前
于无声处完成签到 ,获得积分10
8秒前
nature完成签到,获得积分10
8秒前
Xxxxxxx完成签到,获得积分10
8秒前
机灵的嫣娆完成签到 ,获得积分20
9秒前
鲸123完成签到,获得积分10
10秒前
花火妖妖完成签到,获得积分10
10秒前
PigGyue发布了新的文献求助10
10秒前
Zyyyh完成签到,获得积分10
12秒前
mm完成签到 ,获得积分10
13秒前
香蕉新儿完成签到,获得积分10
13秒前
研友_Raven完成签到,获得积分10
14秒前
肥而不腻的羚羊完成签到,获得积分10
14秒前
14秒前
不舍天真完成签到,获得积分10
14秒前
嘟嘟雯完成签到 ,获得积分10
15秒前
15秒前
zuo完成签到,获得积分10
15秒前
CodeCraft应助Jessiehuang采纳,获得10
15秒前
俊鱼完成签到,获得积分10
16秒前
hadern完成签到,获得积分10
17秒前
结实大白完成签到,获得积分10
17秒前
邵初蓝完成签到,获得积分10
18秒前
王树茂完成签到,获得积分10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118349
求助须知:如何正确求助?哪些是违规求助? 4324327
关于积分的说明 13471622
捐赠科研通 4157281
什么是DOI,文献DOI怎么找? 2278348
邀请新用户注册赠送积分活动 1280132
关于科研通互助平台的介绍 1218766