材料科学
制作
钙钛矿(结构)
能量转换效率
纳米技术
吞吐量
光电子学
化学工程
计算机科学
医学
电信
工程类
病理
替代医学
无线
作者
Nastaran Meftahi,Maciej Adam Surmiak,Sebastian O. Fürer,Kevin J. Rietwyk,Jianfeng Lu,Sonia R. Raga,C.C. Evans,Monika Michalska,Hao Deng,David P. McMeekin,Tuncay Alan,Doojin Vak,Anthony S. R. Chesman,Andrew J. Christofferson,David A. Winkler,Udo Bach,Salvy P. Russo
标识
DOI:10.1002/aenm.202203859
摘要
Abstract Organic–inorganic perovskite solar cells (PSCs) are promising candidates for next‐generation, inexpensive solar panels due to their commercially competitive cost and high power conversion efficiencies. However, PSCs suffer from poor stability. A new and vast subset of PSCs, quasi‐two‐dimensional Ruddlesden–Popper PSCs (quasi‐2D RP PSCs), has improved photostability and superior resilience to environmental conditions compared to three‐dimensional metal‐halide PSCs. To accelerate the search for new quasi‐2D RP PSCs, this work reports a combinatorial, machine learning (ML) enhanced high‐throughput perovskite film fabrication and optimization study. This work designs a bespoke experimental strategy and produces perovskite films with a range of different compositions using only spin‐coating free, reproducible robotic fabrication processes. The performance and characterization data of these solar cells are used to train a ML model that allow materials parameters to be optimized and direct the design of improved materials. The new, ML‐optimized, drop‐cast quasi‐2D RP perovskite films yield solar cells with power conversion efficiencies of up to 16.9%.
科研通智能强力驱动
Strongly Powered by AbleSci AI