Strategies for promoting the degradation of phenol by electro-Fenton: Simultaneously promoting the generation and utilization of H2O2

苯酚 化学 活性炭 降级(电信) 吸附 污染物 吡啶 氮气 碳纤维 化学工程 无机化学 有机化学 材料科学 复合材料 工程类 复合数 电信 计算机科学
作者
Zhuangzhuang Zhang,Haiqian Zhao,Zhonghua Wang,Zhipei Hu,Qingshu Wang,Erlin Meng,Shiwei Lai,J. Ying,Hongguang Li,Cheng-Hsin Wu
出处
期刊:Environmental Research [Elsevier]
卷期号:236: 116794-116794 被引量:1
标识
DOI:10.1016/j.envres.2023.116794
摘要

The use of the electro-Fenton process to continuously generate H2O2 and efficiently degrade organic pollutants is considered a promising technology. The ratio of generation of H2O2 is usually regarded as the critical step; however, how the H2O2 is utilized is also of particular importance. Herein, activated carbon was activated at different temperatures and used to explore the effect of nitrogen doping on the production and utilization of H2O2 in the electro-Fenton-based degradation of organic pollutants. The experimental results indicate that nitrogen-doped activated carbon simultaneously promotes the generation and utilization of H2O2, which is attributed to the regulation of the competition between phenol and O2 adsorption by the doped nitrogen. Nitrogen doping not only improves 2e−ORR selectivity but also aggregates phenol near the cathode to balance the concentrations of phenol and ·OH. Density functional theory (DFT) calculations further confirmed that pyrrole-N as a dopant promoted the adsorption of phenol, while pyridine-N was more favorable for O2 adsorption. The unique balance of nitrogen types possessed by modified activated carbon NAC-750 permits the efficient synergistic generation and utilization of H2O2 in a balanced manner during the degradation of phenol. This work provides a new direction for the rational nitrogen-doping modification of activated carbon for the electro-Fenton-based degradation of organic pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Strike发布了新的文献求助10
刚刚
Rsoup完成签到,获得积分10
刚刚
1秒前
zz发布了新的文献求助10
1秒前
sfzz完成签到,获得积分10
1秒前
1秒前
如履平川完成签到 ,获得积分10
1秒前
大个应助阳光海云采纳,获得50
1秒前
1秒前
新青年完成签到,获得积分0
1秒前
1秒前
现代的又柔应助研友_8yN60L采纳,获得10
2秒前
2秒前
李健应助傲娇的云朵采纳,获得10
2秒前
2秒前
2秒前
liudiqiu完成签到,获得积分10
2秒前
Akashi完成签到,获得积分10
2秒前
风中珩完成签到 ,获得积分10
3秒前
LIU发布了新的文献求助10
3秒前
3秒前
李知恩完成签到,获得积分10
4秒前
4秒前
EthanChan完成签到,获得积分10
4秒前
4秒前
野性的孤菱完成签到,获得积分10
4秒前
茂密的头发完成签到,获得积分10
5秒前
5秒前
Hongsong发布了新的文献求助10
6秒前
勤恳马里奥完成签到,获得积分0
7秒前
7秒前
yzy发布了新的文献求助10
7秒前
8秒前
8秒前
科目三应助AA采纳,获得10
8秒前
8秒前
Elaine发布了新的文献求助10
8秒前
Elaine发布了新的文献求助10
8秒前
Elaine发布了新的文献求助10
8秒前
Elaine发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740