亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing dual electron transfer channels to accelerate CO2 photoreduction guided by machine learning and first-principles calculation

电子转移 光催化 异质结 离解(化学) 材料科学 叠加原理 电子 还原(数学) 计算机科学 纳米技术 对偶(语法数字) 催化作用 化学 光电子学 物理 光化学 物理化学 数学 艺术 生物化学 几何学 量子力学 文学类
作者
Lijin Wang,Tianyi Yang,Bo Feng,Xiangyu Xu,Yuying Shen,Zihan Li,Arramel Arramel,Jizhou Jiang
出处
期刊:Chinese Journal of Catalysis [Elsevier BV]
卷期号:54: 265-277 被引量:25
标识
DOI:10.1016/s1872-2067(23)64546-2
摘要

Designing dual electron transfer channels to achieve efficient carrier separation and understanding the corresponding mechanisms for CO2 photoreduction is of great significance. However, it is still challenging to find desirable model to achieve optimal photocatalytic performance. Herein, first-principles calculations and machine learning were combined to predict an optimized microstructure with dual electron transfer channels. The results indicate that the construction of BiOBr-Bi-g-C3N4 heterojunction has optimal free energy (|ΔG|) for H2O dissociation and CO2 reduction. Besides, the double electron transfer channels and excellent Bi active site can localize the photoexcited carriers at the interlayers rather than randomly distributing. These localized carriers generate intriguing superposition states at a particular timescale that optimize the multi-electronic reaction kinetics pathway of CO2 reduction, resulting in a 4.7 and 3.1 fold increase compared to pristine Bi-BiOBr and Bi-g-C3N4 with single electron transfer pathway. Machine learning was further used to optimize the experimental parameters, and the photocatalytic mechanism was verified by combining first-principles calculation with comprehensive experimental characterizations. This work provides experimental and theoretical references for the accurate prediction, rational design and ingenious fabrication of high-performance photocatalytic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Ma采纳,获得10
18秒前
忧伤的绍辉完成签到 ,获得积分10
19秒前
隐形曼青应助易四夕采纳,获得10
23秒前
1分钟前
易四夕发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Ma发布了新的文献求助10
1分钟前
1分钟前
随机子发布了新的文献求助10
1分钟前
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Ma发布了新的文献求助10
2分钟前
Ma完成签到,获得积分10
2分钟前
3分钟前
易四夕发布了新的文献求助10
3分钟前
3分钟前
3分钟前
英姑应助王大壮采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
Mine发布了新的文献求助10
4分钟前
王大壮发布了新的文献求助10
4分钟前
Mine完成签到,获得积分10
4分钟前
郗妫完成签到,获得积分10
4分钟前
王大壮发布了新的文献求助10
4分钟前
科研通AI5应助Mine采纳,获得30
4分钟前
4分钟前
852应助美好颜采纳,获得10
5分钟前
纯情女大完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
FashionBoy应助科研通管家采纳,获得30
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968492
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167214
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638