Constructing dual electron transfer channels to accelerate CO2 photoreduction guided by machine learning and first-principles calculation

电子转移 光催化 异质结 离解(化学) 材料科学 叠加原理 电子 还原(数学) 计算机科学 纳米技术 对偶(语法数字) 催化作用 化学 光电子学 物理 光化学 物理化学 数学 量子力学 生物化学 几何学 文学类 艺术
作者
Lijin Wang,Tianyi Yang,Bo Feng,Xiangyu Xu,Yuying Shen,Zihan Li,Arramel Arramel,Jizhou Jiang
出处
期刊:Chinese Journal of Catalysis [China Science Publishing & Media Ltd.]
卷期号:54: 265-277 被引量:19
标识
DOI:10.1016/s1872-2067(23)64546-2
摘要

Designing dual electron transfer channels to achieve efficient carrier separation and understanding the corresponding mechanisms for CO2 photoreduction is of great significance. However, it is still challenging to find desirable model to achieve optimal photocatalytic performance. Herein, first-principles calculations and machine learning were combined to predict an optimized microstructure with dual electron transfer channels. The results indicate that the construction of BiOBr-Bi-g-C3N4 heterojunction has optimal free energy (|ΔG|) for H2O dissociation and CO2 reduction. Besides, the double electron transfer channels and excellent Bi active site can localize the photoexcited carriers at the interlayers rather than randomly distributing. These localized carriers generate intriguing superposition states at a particular timescale that optimize the multi-electronic reaction kinetics pathway of CO2 reduction, resulting in a 4.7 and 3.1 fold increase compared to pristine Bi-BiOBr and Bi-g-C3N4 with single electron transfer pathway. Machine learning was further used to optimize the experimental parameters, and the photocatalytic mechanism was verified by combining first-principles calculation with comprehensive experimental characterizations. This work provides experimental and theoretical references for the accurate prediction, rational design and ingenious fabrication of high-performance photocatalytic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁爱的乐枫完成签到,获得积分10
刚刚
刚刚
金润完成签到,获得积分10
1秒前
ZZ完成签到,获得积分10
1秒前
AteeqBaloch发布了新的文献求助10
2秒前
PaulLao完成签到,获得积分10
2秒前
2秒前
fleee发布了新的文献求助10
2秒前
2秒前
3秒前
Luyao发布了新的文献求助10
3秒前
海派Hi完成签到 ,获得积分10
3秒前
依依完成签到 ,获得积分10
4秒前
李健的小迷弟应助库外采纳,获得10
4秒前
yi完成签到 ,获得积分10
4秒前
kbj发布了新的文献求助10
4秒前
6秒前
佳言2009完成签到,获得积分10
7秒前
汉堡包应助漂亮的初蓝采纳,获得10
7秒前
hohokuz发布了新的文献求助10
8秒前
莫里完成签到,获得积分10
8秒前
zxz发布了新的文献求助10
8秒前
Luyao完成签到,获得积分10
9秒前
9秒前
9秒前
马甲完成签到,获得积分10
9秒前
科研通AI5应助xdf采纳,获得10
9秒前
周周完成签到,获得积分10
9秒前
Holybot完成签到,获得积分10
9秒前
11秒前
只道寻常完成签到,获得积分10
11秒前
fleee完成签到,获得积分10
11秒前
swsx1317发布了新的文献求助10
11秒前
12秒前
雪白涵山完成签到,获得积分20
12秒前
liao完成签到 ,获得积分10
12秒前
hu970发布了新的文献求助30
12秒前
科研小白发布了新的文献求助20
13秒前
SciGPT应助白小白采纳,获得10
13秒前
shuxi完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762