DSC-Net: A Novel Interactive Two-Stream Network by Combining Transformer and CNN for Ultrasound Image Segmentation

计算机科学 人工智能 卷积神经网络 分割 稳健性(进化) 散斑噪声 计算机视觉 图像分割 图像处理 模式识别(心理学) 斑点图案 图像(数学) 生物化学 化学 基因
作者
Kai Hu,Yadong Zhu,Tianxin Zhou,Yuan Zhang,Chunhong Cao,Fen Xiao,Xieping Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:5
标识
DOI:10.1109/tim.2023.3322993
摘要

Ultrasound imaging is one of the most widely used medical imaging techniques for visualizing human tissue due to its economical, convenient, practical, and safe advantages. Automatic segmentation of regions of interest in ultrasound images is of great significance in improving the clinical efficiency of ultrasound images and the accuracy of disease diagnosis. However, this task has been challenging due to speckle noise, low contrast, and blurred boundaries in ultrasound images. To address these problems, this paper proposes an interactive two-stream network based on detail screening and compensation called DSC-Net for ultrasound image segmentation. Unlike previous ultrasound image segmentation methods, our DSC-Net combines the Transformer and Convolutional Neural Network to perform accurate ultrasound image segmentation. Specifically, DSC-Net utilizes a Transformer Stream to obtain multi-scale detailed features and a Convolutional Neural Network Stream to extract body features with less noise. Then, the body features guide multi-scale detailed features to filter out noise through the Detail Screening Module. The filtered detail features are applied to Detail Compensation Module to supplement rich details for the Convolutional Neural Network Stream. With such interactions, DSC-Net ensures that more noise-free details are extracted. Extensive experiments on three datasets, including two publicly available datasets and one private dataset, demonstrate that the proposed DSC-Net achieves higher performance and superior robustness than state-of-the-art ultrasound image segmentation methods. Our code is publicly available at https://github.com/MLMIP/DSC-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猴发布了新的文献求助10
刚刚
Jasper应助。。采纳,获得10
1秒前
GY完成签到,获得积分10
1秒前
1秒前
lele发布了新的文献求助10
1秒前
铃铃完成签到,获得积分20
2秒前
2秒前
淡定的疾应助royan2采纳,获得10
2秒前
Paula_xr完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
露宝完成签到,获得积分10
5秒前
5秒前
cello_noah发布了新的文献求助10
5秒前
HouShipeng发布了新的文献求助10
7秒前
wang完成签到,获得积分10
7秒前
Liza完成签到,获得积分10
7秒前
7秒前
8秒前
万能图书馆应助依依采纳,获得10
9秒前
小小发布了新的文献求助10
9秒前
Rez完成签到,获得积分10
9秒前
11秒前
starry完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
李虎发布了新的文献求助10
11秒前
陈阳发布了新的文献求助10
11秒前
英姑应助ZzZz采纳,获得10
12秒前
wang发布了新的文献求助10
12秒前
12秒前
13秒前
沙瑞金完成签到,获得积分10
13秒前
13秒前
15秒前
甘文崔完成签到,获得积分10
16秒前
诚心中恶发布了新的文献求助10
16秒前
保护野菠萝完成签到,获得积分10
16秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054296
求助须知:如何正确求助?哪些是违规求助? 2711314
关于积分的说明 7425526
捐赠科研通 2355866
什么是DOI,文献DOI怎么找? 1247387
科研通“疑难数据库(出版商)”最低求助积分说明 606407
版权声明 596048