UTFNet: Uncertainty-Guided Trustworthy Fusion Network for RGB-Thermal Semantic Segmentation

计算机科学 RGB颜色模型 稳健性(进化) 人工智能 分割 登普斯特-沙弗理论 传感器融合 数据挖掘 基本事实 模式识别(心理学) 机器学习 计算机视觉 生物化学 基因 化学
作者
Qingwang Wang,Cheng Yin,Haochen Song,Tao Shen,Yanfeng Gu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:17
标识
DOI:10.1109/lgrs.2023.3322452
摘要

In real-world scenarios, the information quality provided by RGB and thermal (RGB-T) sensors often varies across samples. This variation will negatively impact the performance of semantic segmentation models in utilizing complementary information from RGB-T modalities, resulting in a decrease in accuracy and fusion credibility. Dynamically estimating the uncertainty of each modality for different samples could help the model perceive such information quality variation and then provide guidance for a reliable fusion. With this in mind, we propose a novel uncertainty-guided trustworthy fusion network (UTFNet) for RGB-T semantic segmentation. Specifically, we design an uncertainty estimation and evidential fusion (UEEF) module to quantify the uncertainty of each modality and then utilize the uncertainty to guide the information fusion. In the UEEF module, we introduce the Dirichlet distribution to model the distribution of the predicted probabilities, parameterized with evidence from each modality and then integrate them with the Dempster-Shafer theory (DST). Moreover, illumination evidence gathering (IEG) and multi-scale evidence gathering (MEG) modules by considering illumination and target multi-scale information respectively are designed to gather more reliable evidence. In the IEG module, we calculate the illumination probability and model it as the illumination evidence. The MEG module can collect evidence for each modality across multiple scales. Both qualitative and quantitative results demonstrate the effectiveness of our proposed model in accuracy, robustness and trustworthiness. The code will be accessible at https://github.com/KustTeamWQW/UTFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
Orange应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
负责冰海完成签到,获得积分10
1秒前
廉洁发布了新的文献求助10
1秒前
1秒前
Ronnie发布了新的文献求助10
2秒前
pxc完成签到,获得积分10
2秒前
脑洞疼应助LCC采纳,获得10
2秒前
贪玩访文发布了新的文献求助10
3秒前
Shauna发布了新的文献求助10
4秒前
4秒前
负责冰海发布了新的文献求助10
7秒前
廉洁完成签到,获得积分10
7秒前
8秒前
隐形曼青应助yhc采纳,获得10
9秒前
Ronnie完成签到,获得积分10
9秒前
Guo21完成签到,获得积分10
10秒前
通通完成签到 ,获得积分10
11秒前
Mint完成签到 ,获得积分10
12秒前
胖墩完成签到,获得积分10
13秒前
酒酿圆子发布了新的文献求助10
13秒前
13秒前
闻巷雨完成签到 ,获得积分10
13秒前
热心市民小红花应助小居采纳,获得30
14秒前
Donger完成签到 ,获得积分10
14秒前
15秒前
16秒前
17秒前
袁江堰完成签到,获得积分10
17秒前
张平一完成签到 ,获得积分10
17秒前
song发布了新的文献求助10
20秒前
璐璇完成签到,获得积分10
21秒前
Cici发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993