UTFNet: Uncertainty-Guided Trustworthy Fusion Network for RGB-Thermal Semantic Segmentation

计算机科学 RGB颜色模型 稳健性(进化) 人工智能 分割 登普斯特-沙弗理论 传感器融合 数据挖掘 基本事实 模式识别(心理学) 机器学习 计算机视觉 生物化学 基因 化学
作者
Qingwang Wang,Cheng Yin,Haochen Song,Tao Shen,Yanfeng Gu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:17
标识
DOI:10.1109/lgrs.2023.3322452
摘要

In real-world scenarios, the information quality provided by RGB and thermal (RGB-T) sensors often varies across samples. This variation will negatively impact the performance of semantic segmentation models in utilizing complementary information from RGB-T modalities, resulting in a decrease in accuracy and fusion credibility. Dynamically estimating the uncertainty of each modality for different samples could help the model perceive such information quality variation and then provide guidance for a reliable fusion. With this in mind, we propose a novel uncertainty-guided trustworthy fusion network (UTFNet) for RGB-T semantic segmentation. Specifically, we design an uncertainty estimation and evidential fusion (UEEF) module to quantify the uncertainty of each modality and then utilize the uncertainty to guide the information fusion. In the UEEF module, we introduce the Dirichlet distribution to model the distribution of the predicted probabilities, parameterized with evidence from each modality and then integrate them with the Dempster-Shafer theory (DST). Moreover, illumination evidence gathering (IEG) and multi-scale evidence gathering (MEG) modules by considering illumination and target multi-scale information respectively are designed to gather more reliable evidence. In the IEG module, we calculate the illumination probability and model it as the illumination evidence. The MEG module can collect evidence for each modality across multiple scales. Both qualitative and quantitative results demonstrate the effectiveness of our proposed model in accuracy, robustness and trustworthiness. The code will be accessible at https://github.com/KustTeamWQW/UTFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHH发布了新的文献求助10
刚刚
吃鱼完成签到 ,获得积分10
刚刚
1秒前
大树发布了新的文献求助10
2秒前
嬛嬛完成签到,获得积分10
2秒前
橙以澄发布了新的文献求助10
2秒前
香蕉你个笨啦啦完成签到,获得积分10
3秒前
Akim应助咎如天采纳,获得10
3秒前
3秒前
觊诺应助HRL采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
mumu完成签到,获得积分10
6秒前
老闭比基尼完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助20
6秒前
7秒前
鲁西西发布了新的文献求助10
7秒前
求知的周完成签到,获得积分10
7秒前
所所应助清晨采纳,获得10
7秒前
7秒前
CipherSage应助王贺采纳,获得10
8秒前
脆皮鱼发布了新的文献求助10
8秒前
12356发布了新的文献求助10
8秒前
sy完成签到,获得积分10
9秒前
额尔其子发布了新的文献求助10
9秒前
青易完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
乐乐应助K甲采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
alchol应助Sylvia采纳,获得30
12秒前
悦耳的母鸡完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025