电催化剂
分解水
双功能
化学工程
离解(化学)
过电位
氢
析氧
化学
电子转移
电极
材料科学
无机化学
催化作用
纳米技术
电化学
光化学
物理化学
光催化
有机化学
工程类
作者
Hongmei Chai,Xu Ma,Yuechen Dang,Yanqun Zhang,Feng Yue,Xiangxiang Pang,Guangqing Wang,Chunming Yang
标识
DOI:10.1016/j.jcis.2023.10.021
摘要
Developing high performance and durable electrocatalysts is crucial for the practical application of large-scale water splitting under high current density. Here, we constructed a Mott–Schottky heterojunction bifunctional electrocatalyst coating of Ni3S4 with Ni(OH)2 thin film supported on Ni foam substrate (Ni3S4@Ni(OH)2) for anion exchange membrane water electrolyzers (AEMWEs). Remarkably, the η500 is as low as 274.6 mV toward the hydrogen evolution reaction and 423.8 mV toward the oxygen evolution reaction. AEMWEs deliver a stable performance that achieves current densities of 500 and 1000 mA cm−2 at a cell voltage of 1.84 and 1.95 V, respectively. In particular, the Ni3S4@Ni(OH)2 exhibits durable stability for 100 h at 500 mA cm−2 without significant degradation and uses 0.75 kW·h of electricity less than commercial Ni foam electrode to produce each standard cubic meter of hydrogen gas at 500 mA cm−2. The excellent performance is ascribed to the triple roles of Ni(OH)2, which prevent the inner Ni3S4 from decomposing during the reaction process, promoting the dissociation of water and formation of adsorbed hydrogen intermediate and accelerating electron transfer ability due to the Mott–Schottky heterojunction between Ni(OH)2 and Ni3S4. This work sheds light on the development of advanced bifunctional electrocatalysts based on non-precious transition metals for AEMWEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI