A SEER data-based nomogram for the prognostic analysis of survival of patients with Kaposi’s sarcoma

列线图 医学 比例危险模型 肿瘤科 多元分析 接收机工作特性 流行病学 内科学 队列 一致性 生存分析 多元统计 放射治疗 统计 数学
作者
Wanghai Li,Ling Wang,Yan Zhang,Yulong Liu,Yinsheng Lin,Chengzhi Li
出处
期刊:Journal of Cancer Research and Therapeutics 卷期号:19 (4): 917-923 被引量:1
标识
DOI:10.4103/jcrt.jcrt_2587_22
摘要

ABSTRACT Background: This study developed the first comprehensive nomogram for predicting the cancer-specific survival (CSS) of patients with Kaposi’s sarcoma (KS). Methods: Data on the demographic and clinical characteristics of 4143 patients with KS were collected from the Surveillance, Epidemiology, and End Results (SEER) database and used for the prognostic analysis. The patients were randomly divided into two groups: training cohort ( n = 2900) and validation cohort ( n = 1243). Multivariate Cox regression analysis was used to identify the predictive variables for developing the first nomogram for the survival prediction of patients with KS. The new survival nomogram was further evaluated using the concordance index ( C -index), area under the time-dependent receiver operating characteristic curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration plotting, and decision curve analysis (DCA). Results: A nomogram was developed for determining the 3-, 5-, 8-, and 10-year CSS probabilities for patients with KS. The nomogram showed that tumor stage had the greatest influence on the CSS of patients with KS, followed by demographic variables (race, marital status, and age at diagnosis) and other clinical characteristics (surgery status, chemotherapy status, tumor risk classification, and radiotherapy status). The nomogram exhibited excellent performance based on the values of the C -index, AUC, NRI, and IDI as well as calibration plots. DCA further confirmed that the nomogram had good net benefits for 3-, 5-, 8-, and 10-year survival analyses. Conclusions: In this study, by using data from the SEER database, we developed the first comprehensive nomogram for analyzing the survival of patients with KS. This nomogram could serve as a convenient and reliable tool for clinicians to predict CSS probabilities for individual patients with KS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助yaya采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
Dr关闭了Dr文献求助
3秒前
gqqq发布了新的文献求助10
5秒前
深情不弱发布了新的文献求助10
5秒前
传奇3应助小燕采纳,获得10
5秒前
思源应助故意的念寒采纳,获得10
7秒前
8秒前
上官若男应助wx采纳,获得10
9秒前
十四阙完成签到,获得积分10
11秒前
12秒前
柔弱友卉应助xuulanni采纳,获得10
12秒前
JamesPei应助现代的竺采纳,获得10
14秒前
画舫发布了新的文献求助10
15秒前
15秒前
weiweideweifeng完成签到 ,获得积分10
15秒前
16秒前
17秒前
18秒前
18秒前
haosu应助十四阙采纳,获得10
18秒前
gqqq完成签到,获得积分10
19秒前
颜靖仇完成签到,获得积分10
20秒前
元宝同学发布了新的文献求助10
20秒前
克林沙星完成签到,获得积分10
23秒前
丘比特应助yaya采纳,获得10
23秒前
可爱的函函应助LiuHuaxi采纳,获得10
23秒前
25秒前
wx发布了新的文献求助10
25秒前
26秒前
赘婿应助xuulanni采纳,获得10
26秒前
请叫我风吹麦浪应助hyd1640采纳,获得30
27秒前
Lucas应助小伙子采纳,获得10
27秒前
流砂完成签到,获得积分10
27秒前
27秒前
28秒前
香蕉觅云应助元宝同学采纳,获得10
29秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462526
求助须知:如何正确求助?哪些是违规求助? 3056054
关于积分的说明 9050624
捐赠科研通 2745705
什么是DOI,文献DOI怎么找? 1506521
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677