An Explainable AI based Clinical Assistance Model for Identifying Patients with the Onset of Sepsis

可解释性 过度拟合 自编码 人工智能 计算机科学 机器学习 卷积神经网络 深度学习 败血症 人工神经网络 医学 免疫学
作者
Snehashis Chakraborty,Komal Kumar,Balakrishna Pailla Reddy,Tanushree Meena,Sudipta Roy
标识
DOI:10.1109/iri58017.2023.00059
摘要

The high mortality rate of sepsis, especially in Intensive Care Unit (ICU) makes it third-highest mortality disease globally. The treatment of sepsis is also time consuming and depends on multi-parametric tests, hence early identification of patients with sepsis becomes crucial. The recent rise in the development of Artificial Intelligence (AI) based models, especially in early prediction of sepsis, have improved the patient outcome. However, drawbacks like low sensitivity, use of excess features that leads to overfitting, and lack of interpretability limit their ability to be used in a clinical setting. So, in this research we have developed a smart, explainable and a highly accurate AI based model (called XAutoNet) that provides quick and early prediction of sepsis with a minimal number of features as input. An application based novel convolutional neural network (CNN) based autoencoder is also implemented that improves the performance of XAutoNet by dimensional reduction. Finally, to unbox the “Black Box” nature of these models, Gradient based Class Activation Map (GradCAM) and SHapley Additive exPlanations (SHAP) are implemented to provide interpretability of autoencoder and XAutoNet in the form of visualization graphs to assist clinicians in diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助啊啊啊采纳,获得10
1秒前
田様应助Enothan采纳,获得10
1秒前
cjjwei发布了新的文献求助10
2秒前
2秒前
xl²-B完成签到,获得积分10
3秒前
Pengzhuhuai完成签到 ,获得积分10
3秒前
4秒前
外向豁完成签到,获得积分10
6秒前
伶俐晓筠发布了新的文献求助10
7秒前
諵十一完成签到,获得积分10
7秒前
Dead Cells完成签到,获得积分10
8秒前
无心的平松完成签到,获得积分10
8秒前
10秒前
11秒前
11秒前
明白完成签到,获得积分10
12秒前
Lit-Tse完成签到,获得积分10
13秒前
Jasper应助张堡采纳,获得10
13秒前
hanjuju完成签到,获得积分20
13秒前
ding应助橘子的哈哈怪采纳,获得10
13秒前
萤火完成签到,获得积分10
13秒前
英姑应助hehe采纳,获得10
14秒前
carbon-dots完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
LL完成签到 ,获得积分10
19秒前
传奇3应助无心采纳,获得10
19秒前
lyy完成签到 ,获得积分10
20秒前
沉静蘑菇完成签到,获得积分20
21秒前
GG发布了新的文献求助10
21秒前
21秒前
爆米花应助StarkGavin采纳,获得10
22秒前
23秒前
小马甲应助zsl采纳,获得10
23秒前
沉静蘑菇发布了新的文献求助10
24秒前
江南烟雨如笙完成签到 ,获得积分10
24秒前
Xenia应助英勇绮南采纳,获得10
24秒前
ranj完成签到,获得积分10
24秒前
Archie完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057090
求助须知:如何正确求助?哪些是违规求助? 2713644
关于积分的说明 7436720
捐赠科研通 2358721
什么是DOI,文献DOI怎么找? 1249510
科研通“疑难数据库(出版商)”最低求助积分说明 607166
版权声明 596314