单体
共价键
堆积
质子化
碳纤维
化学
材料科学
聚合物
高分子化学
结晶学
有机化学
离子
复合数
复合材料
作者
Lin Zhu,Qian Zhang,Fancheng Meng,Mengqi Li,Qifeng Liang,Fan Zhang
标识
DOI:10.1002/anie.202309125
摘要
Vinylene-linked covalent organic frameworks (COFs) are emerging as promising crystalline materials, but their narrow pore engineering is severely impeded by the weak reversibility of the carbon-carbon double bond formation reaction, which has led to less exploration of their ultramicroporous structures and properties. Herein, we developed a single aromatic ring-based tetratopic monomer, tetramethylpyrazine, which undergoes a smooth Knoevenegal condensation at its four arylmethly carbon atoms with linear aromatic dialdehyde monomers upon the self-catalyzed activation of pyridine nitrogen-containing monomers in the presence of an organic anhydride. This has resulted in the formation of two vinylene-linked COFs, which both crystallized in orthorhombic lattices, and layered in AA stacking fashions along the vertical directions. They exhibit high surface areas and well-tailored ultramicropore sizes up to 0.5 nm. The unique cross-linking mode at two pairs of para-positions of each pyrazine unit through carbon-carbon double bonds afford them with π-extended conjugation over the in-plane backbones and substantial semiconducting characters. The resultant COFs can be well-dispersed in water to form stable sub-microparticles with negative charges (zeta potentials: ca. -30 mV), and exhibiting tunable aggregation behaviors through protonation/deprotonation. As a consequence, they exhibit pore-size-dependent colorimetric responses to various anions with different pKa values in high selectivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI