Value of Artificial Intelligence in Improving the Accuracy of Diagnosing TI-RADS Category 4 Nodules

甲状腺结节 人工智能 接收机工作特性 卷积神经网络 恶性肿瘤 医学 逻辑回归 放射科 计算机科学 多层感知器 机器学习 人工神经网络 模式识别(心理学) 病理
作者
Min Lai,Bojian Feng,Jincao Yao,Yifan Wang,Qianmeng Pan,Yuhang Chen,Chen Chen,Na Feng,Fang Shi,Yuan Tian,Lu Gao,Dong Xu
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:49 (11): 2413-2421 被引量:3
标识
DOI:10.1016/j.ultrasmedbio.2023.08.008
摘要

Considerable heterogeneity is observed in the malignancy rates of thyroid nodules classified as category 4 according to the Thyroid Imaging Reporting and Data System (TI-RADS). This study was aimed at comparing the diagnostic performance of artificial intelligence algorithms and radiologists with different experience levels in distinguishing benign and malignant TI-RADS 4 (TR4) nodules.Between January 2019 and September 2022, 1117 TR4 nodules with well-defined pathological findings were collected for this retrospective study. An independent external data set of 125 TR4 nodules was incorporated for testing purposes. Traditional feature-based machine learning (ML) models, deep convolutional neural networks (DCNN) models and a fusion model that integrated the prediction outcomes from all models were used to classify benign and malignant TR4 nodules. A fivefold cross-validation approach was employed, and the diagnostic performance of each model and radiologists was compared.In the external test data set, the area under the receiver operating characteristic curve (AUROC) of the three DCNN-based secondary transfer learning models-InceptionV3, DenseNet121 and ResNet50-were 0.852, 0.837 and 0.856, respectively. These values were higher than those of the three traditional ML models-logistic regression, multilayer perceptron and random forest-at 0.782, 0.790, and 0.767, respectively, and higher than that of an experienced radiologist (0.815). The fusion diagnostic model we developed, with an AUROC of 0.880, was found to outperform the experienced radiologist in diagnosing TR4 nodules.The integration of artificial intelligence algorithms into medical imaging studies could improve the accuracy of identifying high-risk TR4 nodules pre-operatively and have significant clinical application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linllll完成签到,获得积分10
刚刚
遇见完成签到 ,获得积分10
刚刚
LWBlm1912_完成签到,获得积分10
1秒前
李子木发布了新的文献求助10
2秒前
天青色等烟雨完成签到 ,获得积分10
2秒前
鸿鲤发布了新的文献求助10
3秒前
张三关注了科研通微信公众号
3秒前
3秒前
6秒前
lxd发布了新的文献求助10
10秒前
10秒前
11秒前
在水一方应助科研的师弟采纳,获得10
11秒前
刘晓倩发布了新的文献求助10
11秒前
老解完成签到 ,获得积分10
12秒前
12秒前
13秒前
思源应助坚定的可愁采纳,获得10
15秒前
XHY123发布了新的文献求助10
15秒前
16秒前
坚强丹雪完成签到,获得积分10
17秒前
蓝天白云发布了新的文献求助10
17秒前
yuhang完成签到,获得积分10
17秒前
洛苏完成签到,获得积分10
18秒前
吴军霄完成签到,获得积分10
18秒前
666完成签到,获得积分10
18秒前
wanci应助深情代玉采纳,获得10
22秒前
不配.应助小郭采纳,获得10
23秒前
wyy完成签到,获得积分10
24秒前
XHY123完成签到,获得积分10
24秒前
zy完成签到 ,获得积分10
26秒前
26秒前
陶醉的翅膀完成签到,获得积分10
27秒前
茉莉园完成签到,获得积分10
28秒前
科目三应助wyy采纳,获得10
28秒前
孤独的匕完成签到,获得积分10
29秒前
社牛小柯完成签到,获得积分10
30秒前
32秒前
大鱼完成签到,获得积分10
32秒前
zzz发布了新的文献求助10
32秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046