亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Value of Artificial Intelligence in Improving the Accuracy of Diagnosing TI-RADS Category 4 Nodules

甲状腺结节 人工智能 接收机工作特性 卷积神经网络 恶性肿瘤 医学 逻辑回归 放射科 计算机科学 多层感知器 机器学习 人工神经网络 模式识别(心理学) 病理
作者
Min Lai,Bojian Feng,Jincao Yao,Yifan Wang,Qianmeng Pan,Yuhang Chen,Chen Chen,Na Feng,Fang Shi,Yuan Tian,Lu Gao,Dong Xu
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:49 (11): 2413-2421 被引量:3
标识
DOI:10.1016/j.ultrasmedbio.2023.08.008
摘要

Considerable heterogeneity is observed in the malignancy rates of thyroid nodules classified as category 4 according to the Thyroid Imaging Reporting and Data System (TI-RADS). This study was aimed at comparing the diagnostic performance of artificial intelligence algorithms and radiologists with different experience levels in distinguishing benign and malignant TI-RADS 4 (TR4) nodules.Between January 2019 and September 2022, 1117 TR4 nodules with well-defined pathological findings were collected for this retrospective study. An independent external data set of 125 TR4 nodules was incorporated for testing purposes. Traditional feature-based machine learning (ML) models, deep convolutional neural networks (DCNN) models and a fusion model that integrated the prediction outcomes from all models were used to classify benign and malignant TR4 nodules. A fivefold cross-validation approach was employed, and the diagnostic performance of each model and radiologists was compared.In the external test data set, the area under the receiver operating characteristic curve (AUROC) of the three DCNN-based secondary transfer learning models-InceptionV3, DenseNet121 and ResNet50-were 0.852, 0.837 and 0.856, respectively. These values were higher than those of the three traditional ML models-logistic regression, multilayer perceptron and random forest-at 0.782, 0.790, and 0.767, respectively, and higher than that of an experienced radiologist (0.815). The fusion diagnostic model we developed, with an AUROC of 0.880, was found to outperform the experienced radiologist in diagnosing TR4 nodules.The integration of artificial intelligence algorithms into medical imaging studies could improve the accuracy of identifying high-risk TR4 nodules pre-operatively and have significant clinical application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
njxray完成签到 ,获得积分10
1秒前
zmmm发布了新的文献求助10
8秒前
zmmm完成签到,获得积分10
14秒前
16秒前
千山暮雪发布了新的文献求助30
21秒前
23秒前
25秒前
jn完成签到,获得积分10
25秒前
33秒前
千山暮雪完成签到,获得积分10
38秒前
灵巧大地完成签到,获得积分10
39秒前
隐形曼青应助科研通管家采纳,获得10
46秒前
moiumuio完成签到,获得积分10
58秒前
9239完成签到 ,获得积分10
1分钟前
SciGPT应助小鹿采纳,获得10
1分钟前
1分钟前
1分钟前
认真映真发布了新的文献求助10
1分钟前
葉鳳怡完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
张张完成签到 ,获得积分10
2分钟前
认真映真完成签到,获得积分10
2分钟前
2分钟前
令宏发布了新的文献求助30
2分钟前
2分钟前
2分钟前
昌莆完成签到 ,获得积分10
2分钟前
2220完成签到 ,获得积分10
3分钟前
科研通AI5应助令宏采纳,获得30
3分钟前
江上游完成签到 ,获得积分10
3分钟前
3分钟前
小二郎应助傲娇的冷霜采纳,获得20
3分钟前
3分钟前
FashionBoy应助西瓜二郎采纳,获得30
3分钟前
赘婿应助傲娇的冷霜采纳,获得30
3分钟前
3分钟前
昔年若许完成签到,获得积分10
3分钟前
西瓜二郎发布了新的文献求助30
3分钟前
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214