A Comprehensive Review on Machine Learning Models for Real Time Fall Prediction Using Wearable Sensor-Based Gait Analysis

可穿戴计算机 防坠落 计算机科学 机器学习 人工智能 步态 模式 步态分析 可穿戴技术 毒物控制 物理医学与康复 人为因素与人体工程学 医学 嵌入式系统 社会科学 环境卫生 社会学
作者
A Velusamy,J. Akilandeswari,Raj Prabhu
标识
DOI:10.1109/icirca57980.2023.10220663
摘要

Falls are a significant health concern for the elderly population, and fall-related injuries can lead to severe consequences such as disability, loss of independence, and even death. Therefore, early fall prediction and prevention are crucial to ensure the well-being of elderly individuals. In recent years, the use of wearable sensors for gait analysis and fall prediction has gained significant attention in the research community. The purpose of this document is to provide a detailed overview of the latest advancements in real-time fall prediction using wearable sensors and gait analysis. A comprehensive review has been done on various studies that have employed different machine learning algorithms and sensor modalities to predict falls in real-time. Additionally, it describes the challenges and limitations associated with wearable sensor-based fall prediction, and it identifies the possible future research directions in this field and provides a comprehensive narrative review of the recent research on fall risk assessment using wearable sensors. It deliberates the various approaches and methodologies used for fall risk assessment and present an overview of the datasets and machine learning techniques employed for fall risk prediction and also highlight the challenges and limitations of wearable sensors for fall risk assessment and provide recommendations for future research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小羊羔子完成签到,获得积分10
刚刚
familiar_people完成签到,获得积分10
1秒前
2秒前
Ava应助温婉的书蕾采纳,获得10
5秒前
可爱的函函应助Berrymeng采纳,获得10
5秒前
6秒前
认真绿蝶发布了新的文献求助10
6秒前
头铁的颖哥完成签到 ,获得积分10
6秒前
6秒前
不二嘉完成签到,获得积分10
7秒前
bella1201完成签到,获得积分10
8秒前
9秒前
烟花爆火花完成签到,获得积分10
9秒前
10秒前
老刀完成签到,获得积分10
11秒前
感动一江发布了新的文献求助30
11秒前
zzk0307留下了新的社区评论
12秒前
13秒前
王某人发布了新的文献求助10
15秒前
15秒前
FG完成签到,获得积分10
15秒前
姜姜发布了新的文献求助10
16秒前
香蕉觅云应助嘻嘻采纳,获得30
19秒前
百思发布了新的文献求助10
19秒前
ellie0125完成签到 ,获得积分10
20秒前
20秒前
21秒前
赘婿应助000000采纳,获得10
22秒前
22秒前
赘婿应助陶醉笑晴采纳,获得10
22秒前
科研通AI2S应助andrele采纳,获得10
24秒前
25秒前
26秒前
26秒前
26秒前
yinjs158发布了新的文献求助10
27秒前
28秒前
MOF@COF完成签到,获得积分10
29秒前
席玲完成签到,获得积分10
29秒前
酷酷发布了新的文献求助10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310521
求助须知:如何正确求助?哪些是违规求助? 2943373
关于积分的说明 8514415
捐赠科研通 2618654
什么是DOI,文献DOI怎么找? 1431316
科研通“疑难数据库(出版商)”最低求助积分说明 664433
邀请新用户注册赠送积分活动 649616