Lightweight and attention-based CNN architecture for wildfire detection using UAV vision data

计算机科学 卷积神经网络 深度学习 人工智能 学习迁移 火灾探测 人工神经网络 目标检测 建筑 实时计算 模式识别(心理学) 艺术 物理 视觉艺术 热力学
作者
Rahmi Arda Aral,Cemil Zalluhoğlu,Ebru Akçapınar Sezer
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (18): 5768-5787 被引量:4
标识
DOI:10.1080/01431161.2023.2255349
摘要

ABSTRACTUnmanned aerial vehicles (UAVs) are invaluable technologies concerning their remote control and monitoring capabilities. Convolutional neural networks (CNNs), known for their high pattern recognition capabilities, are appropriate for forest fire detection with UAVs. Deep convolutional neural networks show substantial performance on hardware with high processing capabilities. While these networks can be operated in unmanned aerial vehicles controlled from ground control stations equipped with GPU-supported hardware, the execution on a typical UAV's limited computational resources necessitates the use of lightweight, small-sized networks. To overcome these impediments, this article presents a lightweight and attention-based approach for performing forest fire detection tasks using UAV vision data (images acquired by cameras mounted on UAVs). In this paper, we also present comprehensive research for different approaches such as transfer learning, deep CNNs, and lightweight CNNs. Among the experimented models, the attention-based EfficientNetB0 backboned model emerged as the most successful architecture for forest fire detection. With the test accuracy of 92.02%, the F1-score of 92.08%, the recall of 92.02%, and the precision of 92.66% have strongly reinforced the efficiency of the EfficientNetB0-based model in wildfire recognition. Moreover, the network has a less parameter size than the experimented networks. It proves the model's suitability for wildfire detection with UAVs having limited hardware resources.KEYWORDS: UAV Imagerydeep Learningwildfire detectiontransfer learningconvolutional neural networks Disclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助piers采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
张德洁完成签到,获得积分10
刚刚
昭玥完成签到,获得积分10
1秒前
1秒前
1秒前
顾矜应助咸鱼采纳,获得10
1秒前
领导范儿应助小王采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得30
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
Ava应助xhDoc采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
常常完成签到,获得积分0
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
脂蛋白抗原应助杨老师采纳,获得10
1秒前
Orange应助后夜采纳,获得10
1秒前
1秒前
666JACS完成签到,获得积分20
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
chenhuiwan应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研豆包完成签到 ,获得积分10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
PP应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
leaolf应助科研通管家采纳,获得20
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
长毛小狮子完成签到,获得积分10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475