已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lightweight and attention-based CNN architecture for wildfire detection using UAV vision data

计算机科学 卷积神经网络 深度学习 人工智能 学习迁移 火灾探测 人工神经网络 目标检测 建筑 实时计算 模式识别(心理学) 艺术 物理 视觉艺术 热力学
作者
Rahmi Arda Aral,Cemil Zalluhoğlu,Ebru Akçapınar Sezer
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (18): 5768-5787 被引量:4
标识
DOI:10.1080/01431161.2023.2255349
摘要

ABSTRACTUnmanned aerial vehicles (UAVs) are invaluable technologies concerning their remote control and monitoring capabilities. Convolutional neural networks (CNNs), known for their high pattern recognition capabilities, are appropriate for forest fire detection with UAVs. Deep convolutional neural networks show substantial performance on hardware with high processing capabilities. While these networks can be operated in unmanned aerial vehicles controlled from ground control stations equipped with GPU-supported hardware, the execution on a typical UAV's limited computational resources necessitates the use of lightweight, small-sized networks. To overcome these impediments, this article presents a lightweight and attention-based approach for performing forest fire detection tasks using UAV vision data (images acquired by cameras mounted on UAVs). In this paper, we also present comprehensive research for different approaches such as transfer learning, deep CNNs, and lightweight CNNs. Among the experimented models, the attention-based EfficientNetB0 backboned model emerged as the most successful architecture for forest fire detection. With the test accuracy of 92.02%, the F1-score of 92.08%, the recall of 92.02%, and the precision of 92.66% have strongly reinforced the efficiency of the EfficientNetB0-based model in wildfire recognition. Moreover, the network has a less parameter size than the experimented networks. It proves the model's suitability for wildfire detection with UAVs having limited hardware resources.KEYWORDS: UAV Imagerydeep Learningwildfire detectiontransfer learningconvolutional neural networks Disclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ss完成签到 ,获得积分10
1秒前
吾开心完成签到,获得积分20
3秒前
知行者完成签到,获得积分10
3秒前
dery完成签到,获得积分10
3秒前
海贵完成签到,获得积分10
4秒前
柚子完成签到 ,获得积分10
6秒前
6秒前
浮游应助元气满满采纳,获得10
7秒前
坐雨赏花完成签到 ,获得积分10
10秒前
招水若离完成签到,获得积分0
10秒前
恰知完成签到,获得积分10
11秒前
后陡门爱神完成签到 ,获得积分10
11秒前
danli发布了新的文献求助20
13秒前
xiuxiuzhang完成签到 ,获得积分10
14秒前
害怕的冬灵完成签到,获得积分10
14秒前
深情安青应助xiw采纳,获得10
14秒前
慕青应助威武的元彤采纳,获得30
15秒前
初初见你完成签到,获得积分10
15秒前
不与旋覆应助ceeray23采纳,获得20
15秒前
小谢同学完成签到 ,获得积分10
16秒前
在水一方应助waayu采纳,获得10
16秒前
葱葱完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
18秒前
jiabu完成签到 ,获得积分10
19秒前
斯文败类应助冷静新烟采纳,获得10
20秒前
我是老大应助西溪采纳,获得10
20秒前
21秒前
文静听南发布了新的文献求助10
21秒前
23秒前
23秒前
yeah完成签到 ,获得积分10
23秒前
25秒前
哔噗哔噗完成签到 ,获得积分10
26秒前
26秒前
科研通AI5应助小付采纳,获得10
28秒前
28秒前
xiyaxia完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172597
求助须知:如何正确求助?哪些是违规求助? 4362775
关于积分的说明 13584396
捐赠科研通 4210832
什么是DOI,文献DOI怎么找? 2309516
邀请新用户注册赠送积分活动 1308631
关于科研通互助平台的介绍 1255818