Lightweight and attention-based CNN architecture for wildfire detection using UAV vision data

计算机科学 卷积神经网络 深度学习 人工智能 学习迁移 火灾探测 人工神经网络 目标检测 建筑 实时计算 模式识别(心理学) 热力学 物理 艺术 视觉艺术
作者
Rahmi Arda Aral,Cemil Zalluhoğlu,Ebru Akçapınar Sezer
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (18): 5768-5787 被引量:4
标识
DOI:10.1080/01431161.2023.2255349
摘要

ABSTRACTUnmanned aerial vehicles (UAVs) are invaluable technologies concerning their remote control and monitoring capabilities. Convolutional neural networks (CNNs), known for their high pattern recognition capabilities, are appropriate for forest fire detection with UAVs. Deep convolutional neural networks show substantial performance on hardware with high processing capabilities. While these networks can be operated in unmanned aerial vehicles controlled from ground control stations equipped with GPU-supported hardware, the execution on a typical UAV's limited computational resources necessitates the use of lightweight, small-sized networks. To overcome these impediments, this article presents a lightweight and attention-based approach for performing forest fire detection tasks using UAV vision data (images acquired by cameras mounted on UAVs). In this paper, we also present comprehensive research for different approaches such as transfer learning, deep CNNs, and lightweight CNNs. Among the experimented models, the attention-based EfficientNetB0 backboned model emerged as the most successful architecture for forest fire detection. With the test accuracy of 92.02%, the F1-score of 92.08%, the recall of 92.02%, and the precision of 92.66% have strongly reinforced the efficiency of the EfficientNetB0-based model in wildfire recognition. Moreover, the network has a less parameter size than the experimented networks. It proves the model's suitability for wildfire detection with UAVs having limited hardware resources.KEYWORDS: UAV Imagerydeep Learningwildfire detectiontransfer learningconvolutional neural networks Disclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大小铁老头完成签到,获得积分10
2秒前
3秒前
3秒前
木一完成签到,获得积分10
3秒前
默默的立辉完成签到,获得积分10
3秒前
4秒前
阿喔完成签到,获得积分10
4秒前
科科发布了新的文献求助10
5秒前
GGbond发布了新的文献求助10
5秒前
5秒前
完美世界应助李沛书采纳,获得10
6秒前
lantywan完成签到,获得积分10
6秒前
JimmyChin完成签到,获得积分20
6秒前
zky发布了新的文献求助10
7秒前
wsljc134完成签到,获得积分10
7秒前
南笙几梦发布了新的文献求助10
8秒前
9秒前
爆米花应助JAY采纳,获得10
9秒前
wanci应助阿一采纳,获得10
9秒前
shann完成签到,获得积分10
9秒前
丘比特应助无私醉蝶采纳,获得10
10秒前
10秒前
思源应助甜甜的静柏采纳,获得10
10秒前
借一颗糖完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
万一发布了新的文献求助10
12秒前
13秒前
平常季节发布了新的文献求助10
13秒前
13秒前
13秒前
ww发布了新的文献求助10
14秒前
情怀应助张馨悦采纳,获得10
15秒前
超级黄桃发布了新的文献求助10
15秒前
17秒前
刻苦的媚颜完成签到 ,获得积分10
17秒前
大心完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399862
求助须知:如何正确求助?哪些是违规求助? 4519257
关于积分的说明 14074412
捐赠科研通 4432111
什么是DOI,文献DOI怎么找? 2433426
邀请新用户注册赠送积分活动 1425780
关于科研通互助平台的介绍 1404520