MTANet: Multi-Task Attention Network for Automatic Medical Image Segmentation and Classification

计算机科学 人工智能 分割 图像分割 模式识别(心理学) 计算机视觉 特征提取 特征(语言学) 尺度空间分割 医学影像学 基于分割的对象分类 上下文图像分类 图像(数学) 语言学 哲学
作者
Yating Ling,Yuling Wang,Wenli Dai,Jie Yu,Ping Liang,Dexing Kong
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (2): 674-685 被引量:41
标识
DOI:10.1109/tmi.2023.3317088
摘要

Medical image segmentation and classification are two of the most key steps in computer-aided clinical diagnosis. The region of interest were usually segmented in a proper manner to extract useful features for further disease classification. However, these methods are computationally complex and time-consuming. In this paper, we proposed a one-stage multi-task attention network (MTANet) which efficiently classifies objects in an image while generating a high-quality segmentation mask for each medical object. A reverse addition attention module was designed in the segmentation task to fusion areas in global map and boundary cues in high-resolution features, and an attention bottleneck module was used in the classification task for image feature and clinical feature fusion. We evaluated the performance of MTANet with CNN-based and transformer-based architectures across three imaging modalities for different tasks: CVC-ClinicDB dataset for polyp segmentation, ISIC-2018 dataset for skin lesion segmentation, and our private ultrasound dataset for liver tumor segmentation and classification. Our proposed model outperformed state-of-the-art models on all three datasets and was superior to all 25 radiologists for liver tumor diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿巴完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
顺心凡灵发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助50
6秒前
JamesPei应助碧蓝皮卡丘采纳,获得10
9秒前
9秒前
xu发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
13秒前
XHH1994发布了新的文献求助10
15秒前
嘴角上扬完成签到 ,获得积分10
16秒前
打屁飞完成签到,获得积分10
16秒前
0o0完成签到,获得积分10
18秒前
FIN应助善良的剑通采纳,获得30
19秒前
肃肃其羽完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
22秒前
CodeCraft应助XHH1994采纳,获得10
22秒前
24秒前
Wone3完成签到 ,获得积分10
25秒前
26秒前
mawenyu发布了新的文献求助10
26秒前
青原发布了新的文献求助10
26秒前
芋泥发布了新的文献求助30
28秒前
SciGPT应助Vera采纳,获得30
28秒前
28秒前
Owen应助青原采纳,获得10
31秒前
看不懂发布了新的文献求助10
32秒前
秋澄完成签到 ,获得积分10
34秒前
啦啦啦4396发布了新的文献求助10
35秒前
36秒前
阿瓦达啃大瓜完成签到,获得积分20
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824