已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A quality-comprehensive-evaluation-index-based model for evaluating traditional Chinese medicine quality

中医药 质量(理念) 计算机科学 分级(工程) 传统医学 医学 数据挖掘 工程类 替代医学 哲学 土木工程 认识论 病理
作者
Jia Chen,Linfu Li,Zhaozhou Lin,Xian‐Long Cheng,Feng Wei,Shuang‐Cheng Ma
出处
期刊:Chinese Medicine [Springer Nature]
卷期号:18 (1) 被引量:5
标识
DOI:10.1186/s13020-023-00782-0
摘要

Evaluating traditional Chinese medicine (TCM) quality is a powerful method to ensure TCM safety. TCM quality evaluation methods primarily include characterization evaluations and separate physical, chemical, and biological evaluations; however, these approaches have limitations. Nevertheless, researchers have recently integrated evaluation methods, advancing the emergence of frontier research tools, such as TCM quality markers (Q-markers). These studies are largely based on biological activity, with weak correlations between the quality indices and quality. However, these TCM quality indices focus on the individual efficacies of single bioactive components and, therefore, do not accurately represent the TCM quality. Conventionally, provenance, place of origin, preparation, and processing are the key attributes influencing TCM quality. In this study, we identified TCM-attribute-based quality indices and developed a comprehensive multiweighted multi-index-based TCM quality composite evaluation index (QCEI) for grading TCM quality.The area of origin, number of growth years, and harvest season are considered key TCM quality attributes. In this study, licorice was the model TCM to investigate the quality indicators associated with key factors that are considered to influence TCM quality using multivariate statistical analysis, identify biological-evaluation-based pharmacological activity indicators by network pharmacology, establish real quality indicators, and develop a QCEI-based model for grading TCM quality using a machine learning model. Finally, to determine whether different licorice quality grades differently reduced the inflammatory response, TNF-α and IL-1β levels were measured in RAW 264.7 cells using ELISA analysis.The 21 quality indices are suitable candidates for establishing a method for grading licorice quality. A computer model was established using SVM analysis to predict the TCM quality composite evaluation index (TCM QCEI). The tenfold cross validation accuracy was 90.26%. Licorice diameter; total flavonoid content; similarities of HPLC chromatogram fingerprints recorded at 250 and 330 nm; contents of liquiritin apioside, liquiritin, glycyrrhizic acid, and liquiritigenin; and pharmacological activity quality index were identified as the key indices for constructing the model for evaluating licorice quality and determining which model contribution rates were proportionally weighted in the model. The ELISA analysis results preliminarily suggest that the inflammatory responses were likely better reduced by premium-grade than by first-class licorice.In the present study, traditional sensory characterization and modern standardized processes based on production process and pharmacological efficacy evaluation were integrated for use in the assessment of TCM quality. Multidimensional quality evaluation indices were integrated with a machine learning model to identify key quality indices and their corresponding weight coefficients, to establish a multiweighted multi-index and comprehensive quality index, and to construct a QCEI-based model for grading TCM quality. Our results could facilitate and guide the development of TCM quality control research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呵呵发布了新的文献求助10
1秒前
HEIKU应助zeze采纳,获得10
4秒前
科研通AI2S应助开放乐巧采纳,获得10
5秒前
7秒前
8秒前
橘子圭令完成签到,获得积分10
8秒前
梦回唐朝完成签到 ,获得积分10
8秒前
情怀应助乐乐乐乐乐乐采纳,获得10
10秒前
10秒前
12秒前
只如初完成签到,获得积分10
13秒前
希望天下0贩的0应助TTK采纳,获得10
16秒前
ldzjiao完成签到 ,获得积分10
16秒前
A.y.w完成签到,获得积分10
16秒前
美好乐松应助呵呵采纳,获得20
16秒前
16秒前
哈比人linling完成签到,获得积分10
17秒前
井小浩完成签到 ,获得积分10
17秒前
赘婿应助孤鸿寄语采纳,获得20
18秒前
自信的星发布了新的文献求助10
19秒前
jc发布了新的文献求助10
21秒前
22秒前
22秒前
BASS完成签到,获得积分10
24秒前
保持好心情完成签到 ,获得积分10
25秒前
钮卿完成签到 ,获得积分10
26秒前
yang发布了新的文献求助10
26秒前
沉默冬易完成签到,获得积分10
28秒前
29秒前
wzy5508完成签到 ,获得积分10
32秒前
子羽完成签到,获得积分10
34秒前
S1008完成签到,获得积分10
34秒前
少年与梦发布了新的文献求助10
34秒前
这个文献你有么完成签到,获得积分10
35秒前
Ida完成签到 ,获得积分10
36秒前
Ditto完成签到 ,获得积分10
36秒前
41秒前
自信的星完成签到,获得积分10
41秒前
wlei发布了新的文献求助10
42秒前
Denvir完成签到 ,获得积分10
43秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
大理州人民医院2021上半年(卫生类)人员招聘试题及解析 1000
2023云南大理州事业单位招聘专业技术人员医疗岗162人笔试历年典型考题及考点剖析附带答案详解 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3114189
求助须知:如何正确求助?哪些是违规求助? 2764527
关于积分的说明 7678531
捐赠科研通 2419550
什么是DOI,文献DOI怎么找? 1284639
科研通“疑难数据库(出版商)”最低求助积分说明 619761
版权声明 599711