清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A quality-comprehensive-evaluation-index-based model for evaluating traditional Chinese medicine quality

中医药 质量(理念) 计算机科学 分级(工程) 传统医学 医学 数据挖掘 工程类 替代医学 哲学 土木工程 认识论 病理
作者
Jia Chen,Linfu Li,Zhaozhou Lin,Xian‐Long Cheng,Feng Wei,Shuang‐Cheng Ma
出处
期刊:Chinese Medicine [BioMed Central]
卷期号:18 (1) 被引量:12
标识
DOI:10.1186/s13020-023-00782-0
摘要

Evaluating traditional Chinese medicine (TCM) quality is a powerful method to ensure TCM safety. TCM quality evaluation methods primarily include characterization evaluations and separate physical, chemical, and biological evaluations; however, these approaches have limitations. Nevertheless, researchers have recently integrated evaluation methods, advancing the emergence of frontier research tools, such as TCM quality markers (Q-markers). These studies are largely based on biological activity, with weak correlations between the quality indices and quality. However, these TCM quality indices focus on the individual efficacies of single bioactive components and, therefore, do not accurately represent the TCM quality. Conventionally, provenance, place of origin, preparation, and processing are the key attributes influencing TCM quality. In this study, we identified TCM-attribute-based quality indices and developed a comprehensive multiweighted multi-index-based TCM quality composite evaluation index (QCEI) for grading TCM quality.The area of origin, number of growth years, and harvest season are considered key TCM quality attributes. In this study, licorice was the model TCM to investigate the quality indicators associated with key factors that are considered to influence TCM quality using multivariate statistical analysis, identify biological-evaluation-based pharmacological activity indicators by network pharmacology, establish real quality indicators, and develop a QCEI-based model for grading TCM quality using a machine learning model. Finally, to determine whether different licorice quality grades differently reduced the inflammatory response, TNF-α and IL-1β levels were measured in RAW 264.7 cells using ELISA analysis.The 21 quality indices are suitable candidates for establishing a method for grading licorice quality. A computer model was established using SVM analysis to predict the TCM quality composite evaluation index (TCM QCEI). The tenfold cross validation accuracy was 90.26%. Licorice diameter; total flavonoid content; similarities of HPLC chromatogram fingerprints recorded at 250 and 330 nm; contents of liquiritin apioside, liquiritin, glycyrrhizic acid, and liquiritigenin; and pharmacological activity quality index were identified as the key indices for constructing the model for evaluating licorice quality and determining which model contribution rates were proportionally weighted in the model. The ELISA analysis results preliminarily suggest that the inflammatory responses were likely better reduced by premium-grade than by first-class licorice.In the present study, traditional sensory characterization and modern standardized processes based on production process and pharmacological efficacy evaluation were integrated for use in the assessment of TCM quality. Multidimensional quality evaluation indices were integrated with a machine learning model to identify key quality indices and their corresponding weight coefficients, to establish a multiweighted multi-index and comprehensive quality index, and to construct a QCEI-based model for grading TCM quality. Our results could facilitate and guide the development of TCM quality control research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
量子星尘发布了新的文献求助150
17秒前
伍柒叁发布了新的文献求助10
20秒前
binfo完成签到,获得积分10
22秒前
伍柒叁完成签到,获得积分10
27秒前
加贝完成签到 ,获得积分10
44秒前
bkagyin应助MY采纳,获得10
1分钟前
1分钟前
MY发布了新的文献求助10
1分钟前
简奥斯汀完成签到 ,获得积分10
2分钟前
房天川完成签到 ,获得积分10
2分钟前
Raunio完成签到,获得积分10
2分钟前
Able完成签到,获得积分10
2分钟前
紫熊发布了新的文献求助10
3分钟前
彩色亿先完成签到 ,获得积分10
3分钟前
冰封火种发布了新的文献求助10
3分钟前
Hello应助Lss采纳,获得10
3分钟前
fufufu123完成签到 ,获得积分10
4分钟前
4分钟前
李志全完成签到 ,获得积分10
5分钟前
NexusExplorer应助紫熊采纳,获得10
5分钟前
Zoom应助xun采纳,获得10
5分钟前
Kai完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助100
6分钟前
xun完成签到,获得积分20
6分钟前
雅诺德琳发布了新的文献求助30
6分钟前
123123完成签到 ,获得积分10
7分钟前
7分钟前
堪捕发布了新的文献求助30
8分钟前
紫熊完成签到,获得积分10
8分钟前
萝卜猪发布了新的文献求助10
8分钟前
呆萌冰彤完成签到 ,获得积分10
9分钟前
9分钟前
GingerF应助科研通管家采纳,获得50
9分钟前
桐桐应助科研通管家采纳,获得10
9分钟前
GingerF应助科研通管家采纳,获得150
9分钟前
SCH_zhu完成签到,获得积分10
10分钟前
00完成签到 ,获得积分10
10分钟前
aowulan完成签到 ,获得积分10
11分钟前
冉亦完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4901166
求助须知:如何正确求助?哪些是违规求助? 4180698
关于积分的说明 12977201
捐赠科研通 3945594
什么是DOI,文献DOI怎么找? 2164200
邀请新用户注册赠送积分活动 1182511
关于科研通互助平台的介绍 1088853