Steganography Embedding Cost Learning With Generative Multi-Adversarial Network

鉴别器 隐写术 计算机科学 发电机(电路理论) 人工智能 嵌入 机器学习 模式识别(心理学) 算法 电信 功率(物理) 探测器 量子力学 物理
作者
Dongxia Huang,Weiqi Luo,Minglin Liu,Weixuan Tang,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 15-29 被引量:11
标识
DOI:10.1109/tifs.2023.3318939
摘要

Since the generative adversarial network (GAN) was proposed by Ian Goodfellow et al. in 2014, it has been widely used in various fields. However, there are only a few works related to image steganography so far. Existing GAN-based steganographic methods mainly focus on the design of generator, and just assign a relatively poorer steganalyzer in discriminator, which inevitably limits the performances of their models. In this paper, we propose a novel Steganographic method based on Generative Multi-Adversarial Network (Steg-GMAN) to enhance steganography security. Specifically, we first employ multiple steganalyzers rather than a single steganalyzer like existing methods to enhance the performance of discriminator. Furthermore, in order to balance the capabilities of the generator and the discriminator during training stage, we propose an adaptive way to update the parameters of the proposed GAN model according to the discriminant ability of different steganalyzers. In each iteration, we just update the poorest one among all steganalyzers in discriminator, while update the generator with the gradients derived from the strongest one. In this way, the performance of generator and discriminator can be gradually improved, so as to avoid training failure caused by gradient vanishing. Extensive comparative results show that the proposed method can achieve state-of-the-art results compared with the traditional steganography and the modern GAN-based steganographic methods. In addition, a large number of ablation experiments verify the rationality of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Andrew完成签到,获得积分10
3秒前
8秒前
zzc完成签到 ,获得积分10
8秒前
Able完成签到,获得积分10
9秒前
三也关注了科研通微信公众号
9秒前
Lazarus_x完成签到,获得积分10
10秒前
15秒前
小星星完成签到,获得积分10
16秒前
zz完成签到,获得积分10
24秒前
27秒前
健康的雅香完成签到,获得积分10
27秒前
27秒前
29秒前
赘婿应助沉默的玻璃猪采纳,获得10
30秒前
科研通AI2S应助淡然的夜柳采纳,获得10
32秒前
liuyi发布了新的文献求助10
33秒前
lingzhi发布了新的文献求助10
34秒前
今后应助小星星采纳,获得10
35秒前
风中亦玉发布了新的文献求助10
35秒前
38秒前
40秒前
沉默的玻璃猪完成签到,获得积分10
41秒前
科研民工李完成签到,获得积分10
43秒前
45秒前
45秒前
48秒前
七羽完成签到,获得积分10
58秒前
隐形曼青应助激情的诗柳采纳,获得10
1分钟前
研友_西门孤晴完成签到,获得积分10
1分钟前
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
汉堡包应助昏睡的熊猫采纳,获得30
1分钟前
谨慎谷蕊完成签到,获得积分10
1分钟前
依旧发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372178
求助须知:如何正确求助?哪些是违规求助? 2990060
关于积分的说明 8738581
捐赠科研通 2673400
什么是DOI,文献DOI怎么找? 1464453
科研通“疑难数据库(出版商)”最低求助积分说明 677527
邀请新用户注册赠送积分活动 668939