Prediction of Algae Growth: A Machine Learning Perspective

水华 支持向量机 计算机科学 机器学习 人工智能 梯度升压 决策树 赤潮 持续性 生态系统 随机森林 环境科学 生态学 浮游植物 营养物 生物
作者
S K Tiwary,Subhashree Darshana,Debabrata Mohanty,Adyasha Dash,Potnuru Rupsa,Rabindra K. Barik
标识
DOI:10.1145/3607947.3607967
摘要

Algal blooms pose a significant threat to aquatic ecosystems and human health. To address this issue, this paper proposes a machine learning-based approach for predicting harmful algal blooms (HABs) by analyzing environmental features. Algae, as primary organic matter and oxygen producers, play a vital role in the biosphere. However, the exponential increase in algal growth worldwide poses significant challenges to economic development and long-term sustainability. The paper employs three popular machine learning algorithms: Artificial Neural Network (ANN), Gradient Boosting Decision Tree (GBDT), and Support Vector Machine (SVM) to predict algal blooms. The research utilizes real-time data from two locations: the Sassafras River in the United States Chesapeake Bay and Lake Okeechobee in Florida, USA. These locations have experienced frequent HABs due to factors like chemical runoff and nutrient-rich conditions. By analyzing the collected data, the paper identifies and selects the most important features to optimize the prediction models' accuracy. Preliminary results demonstrate promising accuracy in predicting algal growth and identifying key characteristics associated with HABs. These findings contribute to a better understanding of algal blooms and pave the way for effective mitigation strategies to combat this global environmental challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
fairy芬完成签到 ,获得积分10
2秒前
2秒前
汉堡包应助科研小白采纳,获得10
2秒前
清晾油完成签到,获得积分10
2秒前
Rong发布了新的文献求助10
2秒前
阔达凝天完成签到 ,获得积分10
3秒前
a2271559577完成签到,获得积分10
4秒前
SWAGGER123发布了新的文献求助10
4秒前
5秒前
5秒前
lucky22关注了科研通微信公众号
6秒前
7秒前
8秒前
Jasper应助刘春秀采纳,获得10
8秒前
9秒前
Kismet发布了新的文献求助10
10秒前
11秒前
StonesKing发布了新的文献求助10
11秒前
dn发布了新的文献求助10
11秒前
爆米花应助淡淡的新之采纳,获得10
11秒前
刻苦的坤发布了新的文献求助10
11秒前
小蘑菇应助球球采纳,获得10
13秒前
13秒前
victor1995888完成签到,获得积分10
15秒前
SciGPT应助LiuXinping采纳,获得10
16秒前
科研小白完成签到,获得积分10
16秒前
烟花应助言无间采纳,获得10
16秒前
marketing完成签到,获得积分10
17秒前
可爱寻菡完成签到,获得积分20
17秒前
17秒前
JamesPei应助会武功的阿吉采纳,获得10
17秒前
羊羊羊发布了新的文献求助10
17秒前
张宇发布了新的文献求助30
18秒前
华仔应助zrw采纳,获得10
19秒前
22秒前
tingz发布了新的文献求助10
22秒前
李健的小迷弟应助marketing采纳,获得10
22秒前
ttt完成签到,获得积分10
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367