Cross-Modal Graph Knowledge Representation and Distillation Learning for Land Cover Classification

计算机科学 人工智能 卷积神经网络 杠杆(统计) 图形 土地覆盖 蒸馏 机器学习 数据挖掘 情态动词 模式识别(心理学) 特征学习 特征提取 推论 理论计算机科学 土地利用 工程类 土木工程 有机化学 化学 高分子化学
作者
Wenzhen Wang,Fang Liu,Wenzhi Liao,Liang Xiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2023.3307604
摘要

Complementary multimodal remote sensing (RS) data often leads to more robust and accurate classification performance. However, not all modal data can be available at the time of inference due to imaging conditions. To mitigate this issue, cross-modal knowledge distillation becomes an effective method, as it can leverage the complementary characteristics of multimodal data to guide cross-modal classification in cases with missing data. Therefore, this paper examines the shortcomings of traditional CNN cross-modal distillation methods in land cover classification: 1) insufficient knowledge representation; and 2) unstable knowledge transfer. Moreover, a novel cross-modal graph knowledge representation and distillation learning (CGKR-DL) framework is proposed to enhance land cover classification performance. The proposed CGKR-DL designs a single-stream joint feature learning network with convolutional neural network and graph convolutional network (CNN-GCN) to effectively construct the remote topology of data based on the strong correlation between land objects, thus enhancing the knowledge representation ability of the network. In addition, a multi-granularity graph distillation method is proposed to compensate for the inability of traditional CNN distillation in handling graph-structured information, where a feature distillation module based on graph discrimination (FD-GDM) is designed for stable graph feature distillation. We evaluate CGKR-DL on three publicly available multimodal RS datasets (HS-LiDAR, HS-SAR and HS-SAR-DSM) and achieve a significant improvement in comparison with several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Arui发布了新的文献求助20
1秒前
2秒前
2秒前
sopha完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Lian发布了新的文献求助10
3秒前
wanci应助tyx采纳,获得10
3秒前
愉快的秋柔完成签到,获得积分10
4秒前
CipherSage应助任性的忆南采纳,获得10
4秒前
6秒前
6秒前
天天向上发布了新的文献求助10
7秒前
7秒前
ll应助JJQ采纳,获得10
7秒前
10秒前
FashionBoy应助aaaaaa采纳,获得10
10秒前
11秒前
Bao发布了新的文献求助10
12秒前
12秒前
12秒前
王王完成签到 ,获得积分10
13秒前
fuje发布了新的文献求助30
13秒前
小猪猪饲养员完成签到,获得积分10
13秒前
13秒前
教生物的杨教授完成签到,获得积分10
14秒前
14秒前
和平发展完成签到,获得积分10
14秒前
Cameron完成签到,获得积分0
15秒前
烟花应助张老师采纳,获得10
15秒前
nemo完成签到,获得积分20
15秒前
w王w发布了新的文献求助10
16秒前
16秒前
麦乐迪应助jerry采纳,获得10
17秒前
天天快乐应助jerry采纳,获得10
17秒前
英俊水池发布了新的文献求助10
18秒前
壮观的夏蓉完成签到,获得积分0
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421