Rapid detection of multi-indicator components of classical famous formula Zhuru Decoction concentration process based on fusion CNN-LSTM hybrid model with the near-infrared spectrum

葛根素 卷积神经网络 人工智能 计算机科学 中医药 设计质量 汤剂 近红外光谱 深度学习 活性成分 模式识别(心理学) 生物系统 传统医学 化学 药理学 医学 物理 病理 物理化学 粒径 生物 量子力学 替代医学
作者
Tianyu He,Yabo Shi,Enzhong Cui,Xiaoli Wang,Chunqin Mao,Hui Xie,Tulin Lu
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:195: 109438-109438 被引量:9
标识
DOI:10.1016/j.microc.2023.109438
摘要

Traditional Chinese Medicine (TCM) is a collective term for the medicines of all ethnic groups in China, including Han Chinese and ethnic minority medicines, reflecting the Chinese people's understanding of life, health and disease, and is a system of medicine with a long historical tradition and unique theories and technical methods. Due to the nonlinearity, large hysteresis, and strong interference in the concentration process used in the production of traditional Chinese medicine, it is challenging to use just one conventional control method to achieve the desired control effect. The majority of traditional quality control methods used in processing the samples will result in the loss of the active ingredient and in the detection of impurities. Monitoring of multiple critical quality attributes (CQAs) is crucial for the overall process of the index ingredient. In this study, based on the above background, fast and nondestructive near-infrared spectroscopy (NIRS) technique incorporating convolutional neural network (CNN) and long-short-term memory network (LSTM) was utilized to construct a quantitative model based on the seven characteristic components, puerarin, 3′-hydroxy puerarin, 3′-methoxy puerarin, puerarin apigenin, daidzin, glycyrrhizin and glycyrrhizic acid, during the concentration process. The results showed that the relative mean error (MAPE) values of the different components ranged from 0.7% to 2.8% and R2 from 0.981 to 0.992 based on the proposed CNN-LSTM model. The results showed that the combined model of near-infrared spectroscopy fused with convolutional neural network (CNN) and long-short-term memory network (LSTM) was feasible for accurate and rapid monitoring of the concentration of the classic famous prescription Zhuru Decoction (ZRD) during the decoction process and that the method could provide a reference value for rapid nondestructive testing of traditional Chinese medicine compound formulas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助一把过采纳,获得10
1秒前
Waris完成签到 ,获得积分10
1秒前
liars发布了新的文献求助30
1秒前
范范范完成签到,获得积分10
2秒前
zho应助LZH采纳,获得10
2秒前
2秒前
直球科研发布了新的文献求助10
2秒前
2秒前
orixero应助yaochuan采纳,获得10
3秒前
yyybxqmz完成签到,获得积分10
3秒前
3秒前
3秒前
我先睡了完成签到,获得积分20
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
yxx应助科研通管家采纳,获得10
4秒前
呢咕啦嘶嘚咕啦完成签到,获得积分10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
L3213036054发布了新的文献求助10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
dongjy应助科研通管家采纳,获得50
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得30
4秒前
yar应助科研通管家采纳,获得10
4秒前
爱听歌代萱完成签到,获得积分10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
大西瓜应助科研通管家采纳,获得30
4秒前
研友_LJeoa8完成签到,获得积分10
4秒前
4秒前
今后应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600