亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Commercial Indian Bamboo Species Classification on matK DNA Barcode Sequences using Machine Learning Techniques with K-mer

条形码 随机森林 DNA条形码 人工智能 支持向量机 竹子 基因组 计算机科学 机器学习 生物 DNA测序 模式识别(心理学) 鉴定(生物学) 特征提取 计算生物学 DNA 植物 进化生物学 基因 遗传学 操作系统
作者
Ankush D. Sawarkar,Deepti D. Shrimankar,Lal Singh,Anurag Agrahari,Sagar Lachure,Neeraj Dhanraj Bokde
标识
DOI:10.1109/ic2e357697.2023.10262781
摘要

Bamboo, a grass, belongs to the Poaceae family, with 1642 species from 116 genera worldwide. It has exceptional physical, chemical, and mechanical qualities, which allow it to be employed in over a thousand different ways and contribute to a trade value of USD 2.76 billion. Bamboo is grown using rhizomes, tissue culture, or short branch cuttings without any other checks resulting in incorrect species identification and categorisation. Therefore, the classification or identification of these bamboo use its DNA barcode sequences with a K-mer based method, and machine learning (ML) is the most excellent strategy for resolving issues with the conventional or traditional categorisation of the species. A DNA barcode is a brief genetic signature that helps identify the species to which an organism belongs. It is possible to extract a useful feature from genome sequences using K-mer based approaches, which may then be used to increase comparison accuracy. In this research, we evaluate the classification performance of four supervised ML models on the DNA-barcode sequence of six Indian commercial bamboo species with a different K-mer combination. For this classification, we choose matK barcode region and supervised ML models such as Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM) and Gradient Boosting Machine (GBM). The results analysis of these models on the matK DNA sequence with different K-mers demonstrates that the classification capabilities of the GBM approaches are quite promising, and it has an accuracy of 95.3% on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
Yimin完成签到,获得积分20
44秒前
44秒前
蒋杰应助辣手摧花526采纳,获得20
1分钟前
1分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
罗钦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
laa发布了新的文献求助10
2分钟前
2分钟前
2分钟前
深情安青应助laa采纳,获得10
3分钟前
3分钟前
阿童木完成签到 ,获得积分10
3分钟前
4分钟前
Criminology34应助科研通管家采纳,获得20
4分钟前
Criminology34应助科研通管家采纳,获得20
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得20
4分钟前
4分钟前
吼吼哈嘿完成签到 ,获得积分10
4分钟前
orixero应助dllneu采纳,获得10
5分钟前
倩倩完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得20
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
6分钟前
浮游应助Cedric采纳,获得10
7分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346630
求助须知:如何正确求助?哪些是违规求助? 4481113
关于积分的说明 13947295
捐赠科研通 4379029
什么是DOI,文献DOI怎么找? 2406149
邀请新用户注册赠送积分活动 1398713
关于科研通互助平台的介绍 1371523