Machine Learning Models for Brain Arteriovenous Malformations Presenting with Hemorrhage Based on Clinical and Angioarchitectural Characteristics

逻辑回归 医学 颅内动静脉畸形 动静脉畸形 放射科 内科学 脑血管造影 血管造影
作者
Wengui Tao,Shifu Li,Chudai Zeng,Zhou Chen,Zheng Huang,Fenghua Chen
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (4): 1583-1593
标识
DOI:10.1016/j.acra.2023.08.023
摘要

Rationale and Objectives

This study aims to develop the best diagnostic model for brain arteriovenous malformations (bAVMs) rupture by using machine learning (ML) algorithms.

Materials and Methods

We retrospectively included 353 adult patients with ruptured and unruptured bAVMs. The clinical and radiological data on patients were collected. The significant variables were selected using univariable logistic regression. We constructed and compared the predictive models using five supervised ML algorithms, multivariable logistic regression, and R2eDAVM scoring system. A complementary systematic review and meta-analysis of studies was aggregated to explore the potential predictors for bAVMs rupture.

Results

We found that a small nidus size of <3 cm, deep and infratentorial location, longer filling time, and deep and single venous drainage were associated with a higher risk of bAVMs rupture. The multilayer perceptron model showed the best performance with an area under the curve value of 0.736 (95% CI 0.67–0.801) and 0.713 (95% CI 0.647–0.779) in the training and test dataset, respectively. In our pooled analysis, we also found that the male sex, a single feeding artery, hypertension, non-White race, low Spetzler–Martin grade, and coexisting aneurysms are risk factors for bAVMs rupture.

Conclusion

This study further demonstrated the clinical and angioarchitectural characteristics in predicting bAVMs hemorrhage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大胆遥发布了新的文献求助10
1秒前
义气珩发布了新的文献求助10
1秒前
Lxxx_7发布了新的文献求助10
1秒前
万能图书馆应助Ck采纳,获得10
2秒前
繁星与北斗完成签到,获得积分10
2秒前
脑洞疼应助sai采纳,获得10
2秒前
丘比特应助xiaoziyi666采纳,获得10
2秒前
wanci应助我行我素采纳,获得10
3秒前
marinemiao发布了新的文献求助10
3秒前
111完成签到 ,获得积分10
3秒前
无辜黑夜完成签到,获得积分10
4秒前
5秒前
今夜不设防完成签到,获得积分10
5秒前
李健应助木子采纳,获得10
6秒前
爆米花发布了新的文献求助10
6秒前
6秒前
6秒前
可靠的老鼠完成签到,获得积分10
7秒前
落寞依珊应助master-f采纳,获得10
7秒前
wbh发布了新的文献求助10
8秒前
田様应助hu970采纳,获得10
8秒前
科研通AI2S应助钟是一梦采纳,获得10
8秒前
zzz完成签到,获得积分20
9秒前
好玩和有趣完成签到,获得积分10
9秒前
脂蛋白抗原完成签到,获得积分10
9秒前
9秒前
9秒前
虫虫完成签到,获得积分10
9秒前
10秒前
10秒前
喜悦的向珊完成签到,获得积分10
10秒前
10秒前
科研狗发布了新的文献求助10
10秒前
清爽绿凝发布了新的文献求助10
10秒前
10秒前
大个应助佰斯特威采纳,获得10
11秒前
JingP完成签到,获得积分10
12秒前
赘婿应助yuyu采纳,获得10
12秒前
蔡翌文完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740