清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Models for Brain Arteriovenous Malformations Presenting with Hemorrhage Based on Clinical and Angioarchitectural Characteristics

逻辑回归 医学 颅内动静脉畸形 动静脉畸形 放射科 内科学 脑血管造影 血管造影
作者
Wengui Tao,Shifu Li,Chudai Zeng,Zhou Chen,Zheng Huang,Fenghua Chen
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (4): 1583-1593 被引量:1
标识
DOI:10.1016/j.acra.2023.08.023
摘要

Rationale and Objectives

This study aims to develop the best diagnostic model for brain arteriovenous malformations (bAVMs) rupture by using machine learning (ML) algorithms.

Materials and Methods

We retrospectively included 353 adult patients with ruptured and unruptured bAVMs. The clinical and radiological data on patients were collected. The significant variables were selected using univariable logistic regression. We constructed and compared the predictive models using five supervised ML algorithms, multivariable logistic regression, and R2eDAVM scoring system. A complementary systematic review and meta-analysis of studies was aggregated to explore the potential predictors for bAVMs rupture.

Results

We found that a small nidus size of <3 cm, deep and infratentorial location, longer filling time, and deep and single venous drainage were associated with a higher risk of bAVMs rupture. The multilayer perceptron model showed the best performance with an area under the curve value of 0.736 (95% CI 0.67–0.801) and 0.713 (95% CI 0.647–0.779) in the training and test dataset, respectively. In our pooled analysis, we also found that the male sex, a single feeding artery, hypertension, non-White race, low Spetzler–Martin grade, and coexisting aneurysms are risk factors for bAVMs rupture.

Conclusion

This study further demonstrated the clinical and angioarchitectural characteristics in predicting bAVMs hemorrhage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Lqian_Yu完成签到 ,获得积分10
10秒前
21秒前
林克完成签到,获得积分10
26秒前
搜集达人应助zuko采纳,获得30
32秒前
36秒前
MaoXinLei发布了新的文献求助20
38秒前
48秒前
zuko发布了新的文献求助30
48秒前
orixero应助无情的琳采纳,获得10
52秒前
58秒前
无情的琳发布了新的文献求助10
1分钟前
1分钟前
amerla发布了新的文献求助10
1分钟前
1分钟前
打打应助amerla采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小亮完成签到 ,获得积分10
1分钟前
amerla完成签到,获得积分20
1分钟前
852应助凉宫八月采纳,获得10
1分钟前
1分钟前
凉宫八月发布了新的文献求助10
1分钟前
sandwich完成签到 ,获得积分10
1分钟前
万能图书馆应助MaoXinLei采纳,获得20
2分钟前
2分钟前
坚果发布了新的文献求助10
2分钟前
2分钟前
2分钟前
zuko发布了新的文献求助30
2分钟前
2分钟前
无私雅柏完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
小烦同学完成签到,获得积分10
3分钟前
zuko完成签到,获得积分10
3分钟前
77wlr完成签到,获得积分10
3分钟前
归尘发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724173
求助须知:如何正确求助?哪些是违规求助? 5285405
关于积分的说明 15299668
捐赠科研通 4872231
什么是DOI,文献DOI怎么找? 2616763
邀请新用户注册赠送积分活动 1566611
关于科研通互助平台的介绍 1523525