FPGA Hardware Implementation of Efficient Long Short-Term Memory Network Based on Construction Vector Method

计算机科学 现场可编程门阵列 管道(软件) 压缩比 计算机工程 支持向量机 算法 并行计算 计算机硬件 人工智能 汽车工程 工程类 程序设计语言 内燃机
作者
T. Li,Shenshen Gu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 122357-122367 被引量:2
标识
DOI:10.1109/access.2023.3329048
摘要

Long Short-Term Memory (LSTM) and its variants have been widely adopted in many sequential learning tasks, such as speech recognition and machine translation. The low-latency and energy-efficiency requirements of the real-world applications make model compression and hardware acceleration for LSTM an urgent need. In this paper, we first propose a weight parameter generation method based on vector construction that can make the model have a higher compression ratio and produce less precision attenuation. Furthermore, we study in detail the influence of the size of the construction vector on the computational complexity, model compression ratio and accuracy of the construction vector, in order to obtain the optimal size design interval. Moreover, we designed a linear transformation method and a convolution method to reduce the dimension of the input sequence, so that it can be applied to training sets of different dimensions without changing the size of the model construction vector. Finally, we use high-level synthesis (HLS) to deploy the obtained LSTM inference model to the FPGA device, and use the parallel pipeline operation to realize the reuse of resources. Experiments show that, compared with the block circulant matrix method, the proposed designs generated by our framework achieve up to 2 times gains for compression with same accuracy degradation, and it has an acceptable delay. With the same compression ratio, our accuracy decay is 45% of the former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
时尚铁身完成签到 ,获得积分10
3秒前
3秒前
斯文败类应助An采纳,获得10
4秒前
爆米花应助李小伟采纳,获得10
5秒前
白翊辰完成签到,获得积分20
7秒前
附子硫磺发布了新的文献求助10
7秒前
大龙哥886完成签到,获得积分10
7秒前
jevon应助周芷卉采纳,获得10
9秒前
圈圈关注了科研通微信公众号
10秒前
伯尔尼圆白菜完成签到,获得积分10
10秒前
井野浮应助上善若水采纳,获得10
10秒前
eggbasten完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
小白完成签到,获得积分10
13秒前
Owen应助li采纳,获得10
14秒前
灌灌灌灌发布了新的文献求助10
14秒前
ClancyJacky完成签到,获得积分20
15秒前
Zhen Wang发布了新的文献求助10
15秒前
能干的狗发布了新的文献求助20
15秒前
16秒前
踏实蘑菇完成签到,获得积分20
16秒前
16秒前
李小伟发布了新的文献求助10
18秒前
科研猫发布了新的文献求助10
18秒前
雪花儿发布了新的文献求助10
18秒前
18秒前
18秒前
wpybird完成签到,获得积分10
19秒前
大模型应助Zhen Wang采纳,获得10
19秒前
19秒前
LL发布了新的文献求助50
19秒前
方赫然应助lull采纳,获得10
19秒前
不配.应助lull采纳,获得10
19秒前
willow应助lull采纳,获得10
19秒前
=======发布了新的文献求助10
20秒前
秋子发布了新的文献求助10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233472
求助须知:如何正确求助?哪些是违规求助? 2880022
关于积分的说明 8213600
捐赠科研通 2547449
什么是DOI,文献DOI怎么找? 1376954
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154