FPGA Hardware Implementation of Efficient Long Short-Term Memory Network Based on Construction Vector Method

计算机科学 现场可编程门阵列 管道(软件) 压缩比 计算机工程 支持向量机 算法 并行计算 计算机硬件 人工智能 汽车工程 工程类 程序设计语言 内燃机
作者
T. Li,Shenshen Gu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 122357-122367 被引量:2
标识
DOI:10.1109/access.2023.3329048
摘要

Long Short-Term Memory (LSTM) and its variants have been widely adopted in many sequential learning tasks, such as speech recognition and machine translation. The low-latency and energy-efficiency requirements of the real-world applications make model compression and hardware acceleration for LSTM an urgent need. In this paper, we first propose a weight parameter generation method based on vector construction that can make the model have a higher compression ratio and produce less precision attenuation. Furthermore, we study in detail the influence of the size of the construction vector on the computational complexity, model compression ratio and accuracy of the construction vector, in order to obtain the optimal size design interval. Moreover, we designed a linear transformation method and a convolution method to reduce the dimension of the input sequence, so that it can be applied to training sets of different dimensions without changing the size of the model construction vector. Finally, we use high-level synthesis (HLS) to deploy the obtained LSTM inference model to the FPGA device, and use the parallel pipeline operation to realize the reuse of resources. Experiments show that, compared with the block circulant matrix method, the proposed designs generated by our framework achieve up to 2 times gains for compression with same accuracy degradation, and it has an acceptable delay. With the same compression ratio, our accuracy decay is 45% of the former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Dita完成签到,获得积分10
2秒前
惠惠发布了新的文献求助10
2秒前
脑洞疼应助lan采纳,获得10
3秒前
4秒前
成就的笑南完成签到 ,获得积分10
5秒前
偷狗的小月亮完成签到,获得积分10
5秒前
爱吃泡芙完成签到,获得积分10
5秒前
ysl完成签到,获得积分10
6秒前
6秒前
爆米花应助pipge采纳,获得30
6秒前
彻底完成签到,获得积分10
7秒前
8秒前
韋晴完成签到,获得积分10
9秒前
9秒前
11秒前
领导范儿应助wenjian采纳,获得10
11秒前
11秒前
奇拉维特完成签到 ,获得积分10
11秒前
12秒前
Apple发布了新的文献求助10
12秒前
wtg完成签到,获得积分10
12秒前
在水一方应助Sheila采纳,获得10
13秒前
英姑应助YE采纳,获得30
13秒前
ysl发布了新的文献求助30
13秒前
13秒前
cilan完成签到 ,获得积分10
16秒前
义气的妙松完成签到,获得积分10
16秒前
yangjing发布了新的文献求助10
17秒前
rosexu发布了新的文献求助10
17秒前
盘尼西林发布了新的文献求助10
18秒前
科研通AI2S应助我是125采纳,获得10
18秒前
李健的小迷弟应助arkamar采纳,获得10
19秒前
Xiaoxiao完成签到,获得积分10
19秒前
cilan发布了新的文献求助10
19秒前
SciGPT应助William鉴哲采纳,获得10
19秒前
20秒前
咩咩完成签到,获得积分20
21秒前
合一海盗应助wtg采纳,获得200
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808