FPGA Hardware Implementation of Efficient Long Short-Term Memory Network Based on Construction Vector Method

计算机科学 现场可编程门阵列 管道(软件) 压缩比 计算机工程 支持向量机 算法 并行计算 计算机硬件 人工智能 汽车工程 工程类 程序设计语言 内燃机
作者
T. Li,Shenshen Gu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 122357-122367 被引量:2
标识
DOI:10.1109/access.2023.3329048
摘要

Long Short-Term Memory (LSTM) and its variants have been widely adopted in many sequential learning tasks, such as speech recognition and machine translation. The low-latency and energy-efficiency requirements of the real-world applications make model compression and hardware acceleration for LSTM an urgent need. In this paper, we first propose a weight parameter generation method based on vector construction that can make the model have a higher compression ratio and produce less precision attenuation. Furthermore, we study in detail the influence of the size of the construction vector on the computational complexity, model compression ratio and accuracy of the construction vector, in order to obtain the optimal size design interval. Moreover, we designed a linear transformation method and a convolution method to reduce the dimension of the input sequence, so that it can be applied to training sets of different dimensions without changing the size of the model construction vector. Finally, we use high-level synthesis (HLS) to deploy the obtained LSTM inference model to the FPGA device, and use the parallel pipeline operation to realize the reuse of resources. Experiments show that, compared with the block circulant matrix method, the proposed designs generated by our framework achieve up to 2 times gains for compression with same accuracy degradation, and it has an acceptable delay. With the same compression ratio, our accuracy decay is 45% of the former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ability发布了新的文献求助10
1秒前
2秒前
3秒前
yar应助科研人采纳,获得10
4秒前
Siso发布了新的文献求助10
4秒前
张aa发布了新的文献求助20
6秒前
lili发布了新的文献求助10
6秒前
honey发布了新的文献求助10
6秒前
jiang完成签到 ,获得积分10
6秒前
7秒前
传奇3应助loading采纳,获得10
7秒前
Leokin完成签到,获得积分10
8秒前
CodeCraft应助收手吧大哥采纳,获得50
10秒前
Ren应助zz采纳,获得10
10秒前
11秒前
lyg616358001发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
14秒前
李健的小迷弟应助无误采纳,获得10
15秒前
好柿花生发布了新的文献求助10
16秒前
16秒前
17秒前
zhangyu应助勤恳立轩采纳,获得10
17秒前
17秒前
Binbin发布了新的文献求助10
17秒前
英俊的丹亦完成签到,获得积分10
17秒前
zhuling发布了新的文献求助10
18秒前
一介书生发布了新的文献求助10
18秒前
19秒前
科研通AI2S应助zhouxuefeng采纳,获得10
19秒前
19秒前
毓雅完成签到,获得积分10
20秒前
20秒前
21秒前
Tina发布了新的文献求助10
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014