Continual Learning for Remote Sensing Image Scene Classification With Prompt Learning

遗忘 计算机科学 人工智能 机器学习 任务(项目管理) 钥匙(锁) 过程(计算) 深度学习 透视图(图形) 多任务学习 上下文图像分类 图像(数学) 计算机安全 哲学 语言学 管理 经济 操作系统
作者
Ling Zhao,Linrui Xu,Zhao Li,Xiaoling Zhang,Yuhan Wang,Dingqi Ye,Jian Peng,Haifeng Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5
标识
DOI:10.1109/lgrs.2023.3328981
摘要

Overcoming catastrophic forgetting is a key difficulty for remote sensing image (RSI) classification in open world applications. The core of this problem lies in the ability of RSI scene classification models to adapt to the changing environment and maintain the learned knowledge while continually learning new knowledge. Mainstream replay-based approaches overcome catastrophic forgetting by reenacting and retracing past experiences in the process of learning new data. However, such approaches rely heavily on the storage of historical data, and the recent rise of new paradigms based on prompt learning offers a new perspective of using only task-related “instructions” (i.e., prompts) to guide the model’s continual learning and reasoning. Therein, the task knowledge encoded by the prompt improves the model’s ability to overcome forgetting while reducing the amount of data and model parameters required by traditional data-driven approaches. Therefore, we propose a continual learning method based on prompt learning for RSI classification. We systematically analyze and reveal the potential of prompt learning for continual learning of RSI classification. Experiments on three publicly available remote sensing datasets show that prompt learning significantly outperforms two comparable methods on 3, 6, and 9 tasks, with an average accuracy (ACC) improvement of approximately 43%. Performance improvements of 4% to 6% were achieved when compared to advanced prototype network methods. We found that prompt-generation strategies and prompt-related components significantly affect performance: (1) prompt-generation strategies are strongly correlated with the model’s performance in overcoming catastrophic forgetting; (2) prompt-related components are correlated with remote sensing images of different scales. The new paradigm of prompt learning potentially provides a new idea for the continual learning problem of RSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随机完成签到,获得积分10
1秒前
Katie完成签到,获得积分10
1秒前
欢喜风完成签到,获得积分10
2秒前
公冶凡波发布了新的文献求助100
2秒前
TT完成签到,获得积分10
2秒前
ShuangWeng应助雨且青采纳,获得20
2秒前
3秒前
Lucas完成签到,获得积分10
3秒前
lhl完成签到,获得积分10
4秒前
无语的海蓝完成签到 ,获得积分10
4秒前
4秒前
5秒前
fossil完成签到,获得积分10
5秒前
5秒前
煮饭吃Zz发布了新的文献求助10
6秒前
酷波er应助Yang采纳,获得10
6秒前
6秒前
不配.应助HOHO采纳,获得20
6秒前
丘比特应助zhanzhanzhan采纳,获得50
7秒前
zhouleiwang完成签到,获得积分10
7秒前
8秒前
可爱的函函应助害羞傲薇采纳,获得10
8秒前
8秒前
8秒前
超级羊宝完成签到,获得积分20
9秒前
倪满分完成签到,获得积分10
9秒前
9秒前
starlx0813完成签到 ,获得积分10
9秒前
amy发布了新的文献求助10
10秒前
abc完成签到 ,获得积分10
10秒前
10秒前
vvv发布了新的文献求助10
11秒前
11秒前
Manere发布了新的文献求助10
11秒前
Fine发布了新的文献求助10
12秒前
Yuantian发布了新的文献求助30
12秒前
姁姁发布了新的文献求助10
12秒前
呆萌傲丝发布了新的文献求助20
13秒前
倪满分发布了新的文献求助10
13秒前
登登完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155506
求助须知:如何正确求助?哪些是违规求助? 2806610
关于积分的说明 7870084
捐赠科研通 2464969
什么是DOI,文献DOI怎么找? 1312053
科研通“疑难数据库(出版商)”最低求助积分说明 629847
版权声明 601892