Continual Learning for Remote Sensing Image Scene Classification With Prompt Learning

遗忘 计算机科学 人工智能 机器学习 任务(项目管理) 钥匙(锁) 过程(计算) 深度学习 透视图(图形) 多任务学习 上下文图像分类 图像(数学) 计算机安全 哲学 语言学 管理 经济 操作系统
作者
Ling Zhao,Linrui Xu,Zhao Li,Xiaoling Zhang,Yuhan Wang,Dingqi Ye,Jian Peng,Haifeng Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5
标识
DOI:10.1109/lgrs.2023.3328981
摘要

Overcoming catastrophic forgetting is a key difficulty for remote sensing image (RSI) classification in open world applications. The core of this problem lies in the ability of RSI scene classification models to adapt to the changing environment and maintain the learned knowledge while continually learning new knowledge. Mainstream replay-based approaches overcome catastrophic forgetting by reenacting and retracing past experiences in the process of learning new data. However, such approaches rely heavily on the storage of historical data, and the recent rise of new paradigms based on prompt learning offers a new perspective of using only task-related “instructions” (i.e., prompts) to guide the model’s continual learning and reasoning. Therein, the task knowledge encoded by the prompt improves the model’s ability to overcome forgetting while reducing the amount of data and model parameters required by traditional data-driven approaches. Therefore, we propose a continual learning method based on prompt learning for RSI classification. We systematically analyze and reveal the potential of prompt learning for continual learning of RSI classification. Experiments on three publicly available remote sensing datasets show that prompt learning significantly outperforms two comparable methods on 3, 6, and 9 tasks, with an average accuracy (ACC) improvement of approximately 43%. Performance improvements of 4% to 6% were achieved when compared to advanced prototype network methods. We found that prompt-generation strategies and prompt-related components significantly affect performance: (1) prompt-generation strategies are strongly correlated with the model’s performance in overcoming catastrophic forgetting; (2) prompt-related components are correlated with remote sensing images of different scales. The new paradigm of prompt learning potentially provides a new idea for the continual learning problem of RSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我想把这玩意儿染成绿的完成签到 ,获得积分10
1秒前
TG_FY完成签到,获得积分10
1秒前
1秒前
hhh完成签到,获得积分10
1秒前
JamesPei应助诗轩采纳,获得10
2秒前
TT完成签到,获得积分10
3秒前
reck发布了新的文献求助10
3秒前
4秒前
DK发布了新的文献求助10
4秒前
英俊的铭应助ren采纳,获得10
4秒前
圈圈发布了新的文献求助10
4秒前
乐乱完成签到 ,获得积分10
5秒前
415484112完成签到,获得积分10
6秒前
yinyi发布了新的文献求助10
6秒前
6秒前
赵一丁完成签到,获得积分10
7秒前
成就绮琴完成签到 ,获得积分10
7秒前
Chen完成签到,获得积分10
7秒前
huanfid完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
Stitch完成签到 ,获得积分10
8秒前
8秒前
眯眯眼的冷珍完成签到,获得积分10
8秒前
bjyx完成签到,获得积分10
8秒前
reck完成签到,获得积分10
9秒前
pharmstudent发布了新的文献求助30
9秒前
小田完成签到,获得积分10
9秒前
小喵发布了新的文献求助10
10秒前
FashionBoy应助毛毛哦啊采纳,获得10
10秒前
Lucas应助Chen采纳,获得10
11秒前
强健的蚂蚁完成签到,获得积分20
11秒前
小宇发布了新的文献求助10
11秒前
斜杠武完成签到,获得积分20
11秒前
12秒前
伞兵龙发布了新的文献求助10
12秒前
RC_Wang应助科研小民工采纳,获得10
12秒前
sanben完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672