清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Continual Learning for Remote Sensing Image Scene Classification With Prompt Learning

遗忘 计算机科学 人工智能 机器学习 任务(项目管理) 钥匙(锁) 过程(计算) 深度学习 透视图(图形) 多任务学习 上下文图像分类 图像(数学) 计算机安全 哲学 语言学 管理 经济 操作系统
作者
Ling Zhao,Linrui Xu,Zhao Li,Xiaoling Zhang,Yuhan Wang,Dingqi Ye,Jian Peng,Haifeng Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5
标识
DOI:10.1109/lgrs.2023.3328981
摘要

Overcoming catastrophic forgetting is a key difficulty for remote sensing image (RSI) classification in open world applications. The core of this problem lies in the ability of RSI scene classification models to adapt to the changing environment and maintain the learned knowledge while continually learning new knowledge. Mainstream replay-based approaches overcome catastrophic forgetting by reenacting and retracing past experiences in the process of learning new data. However, such approaches rely heavily on the storage of historical data, and the recent rise of new paradigms based on prompt learning offers a new perspective of using only task-related “instructions” (i.e., prompts) to guide the model’s continual learning and reasoning. Therein, the task knowledge encoded by the prompt improves the model’s ability to overcome forgetting while reducing the amount of data and model parameters required by traditional data-driven approaches. Therefore, we propose a continual learning method based on prompt learning for RSI classification. We systematically analyze and reveal the potential of prompt learning for continual learning of RSI classification. Experiments on three publicly available remote sensing datasets show that prompt learning significantly outperforms two comparable methods on 3, 6, and 9 tasks, with an average accuracy (ACC) improvement of approximately 43%. Performance improvements of 4% to 6% were achieved when compared to advanced prototype network methods. We found that prompt-generation strategies and prompt-related components significantly affect performance: (1) prompt-generation strategies are strongly correlated with the model’s performance in overcoming catastrophic forgetting; (2) prompt-related components are correlated with remote sensing images of different scales. The new paradigm of prompt learning potentially provides a new idea for the continual learning problem of RSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默滑板完成签到,获得积分10
3秒前
huiluowork完成签到 ,获得积分10
9秒前
月儿完成签到 ,获得积分10
26秒前
33秒前
zijingsy完成签到 ,获得积分10
33秒前
Mkstar完成签到,获得积分10
42秒前
45秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
DD应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
flyingpig完成签到,获得积分10
56秒前
jlwang完成签到,获得积分10
1分钟前
fogsea完成签到,获得积分0
1分钟前
复杂的可乐完成签到 ,获得积分10
1分钟前
胡国伦完成签到 ,获得积分10
1分钟前
骄傲不是与生俱来完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ZHANG完成签到 ,获得积分10
1分钟前
apt完成签到 ,获得积分10
2分钟前
想写文章的绿完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
禹山河发布了新的文献求助10
2分钟前
l老王完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
传奇完成签到 ,获得积分10
2分钟前
龙弟弟完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
mito完成签到,获得积分10
2分钟前
vicky发布了新的文献求助10
3分钟前
Wang完成签到 ,获得积分20
3分钟前
ys完成签到 ,获得积分10
3分钟前
禹山河完成签到 ,获得积分20
3分钟前
嵤麈应助缓慢的蜗牛采纳,获得10
3分钟前
3分钟前
呆萌冰烟发布了新的文献求助10
3分钟前
天天快乐应助vicky采纳,获得10
3分钟前
MchemG应助wuke采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506286
关于积分的说明 11128805
捐赠科研通 3238363
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069