Towards Efficient Privacy-Preserving Top-k Trajectory Similarity Query

计算机科学 同态加密 弹道 相似性(几何) 加密 密文 明文 数据挖掘 理论计算机科学 算法 人工智能 图像(数学) 物理 天文 操作系统
作者
Kelai Yi,Yuefeng Chen,Yuchen Su,Xiong Li,Hongbo Liu,Huan Dai,Xiaonan Guo,Yingying Chen
标识
DOI:10.1109/mass58611.2023.00070
摘要

Similarity search for trajectories, especially the top-k similarity query, has been widely used in different fields, such as personalized travel route recommendation, car pooling, etc. Previous works have studied top-k similarity trajectory query in plaintext, but the increasing attention to privacy protection makes top-k similarity query on trajectory data become a challenge. In this paper, we propose a privacy-preserving top-k similarity query scheme over large-scale trajectory data based on Hilbert curve and homomorphic encryption. Towards this end, we first define a spatio-temporal trajectory similarity measure that supports homomorphic computation under ciphertext based on numerical integration algorithm for discrete trajectory data. A new filter-and-refine strategy for similarity query is also proposed to filter out the dissimilar trajectories based on Hilbert curve and refine the remaining trajectories with a secure average comparison protocol over the encrypted data. Finally, the exact query results can be obtained through Hilbert curve decoding. Our security analysis demonstrates that both locations and identities of the queried trajectories are preserved from the inference attack, and so does the privacy of the query user's trajectory. Meanwhile, extensive experimental results show that the proposed scheme can filter out 95% dissimilar trajectories with over 99% average precision, achieving higher query efficiency than the state-of-the-art techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻的鹏笑完成签到,获得积分10
刚刚
vc完成签到,获得积分20
刚刚
纳古菌完成签到,获得积分10
刚刚
小勇仔完成签到,获得积分10
1秒前
肖坤完成签到,获得积分10
1秒前
guanguan发布了新的文献求助10
1秒前
Peggy69发布了新的文献求助10
1秒前
theverve完成签到,获得积分10
1秒前
1秒前
2秒前
今后应助ginkgoleaf采纳,获得10
2秒前
wq完成签到,获得积分10
2秒前
allglitters完成签到,获得积分10
2秒前
2秒前
2秒前
千尺焰完成签到,获得积分10
2秒前
又该看文献了完成签到 ,获得积分10
3秒前
情怀应助温柔体贴阿尔法采纳,获得10
3秒前
追寻月饼发布了新的文献求助10
3秒前
风暴之灵关注了科研通微信公众号
3秒前
lz123发布了新的文献求助10
3秒前
3秒前
Yang完成签到,获得积分10
3秒前
满意静丹完成签到,获得积分10
3秒前
CipherSage应助细腻含羞草采纳,获得10
3秒前
wjx关闭了wjx文献求助
4秒前
teamwang完成签到,获得积分10
4秒前
dou完成签到,获得积分10
4秒前
雪时晴发布了新的文献求助10
4秒前
4秒前
Yangfan完成签到,获得积分10
4秒前
4秒前
5秒前
zzz完成签到,获得积分10
5秒前
曾经的白猫完成签到,获得积分20
5秒前
晴晴完成签到,获得积分10
6秒前
上官若男应助QQ采纳,获得10
6秒前
共享精神应助小勇仔采纳,获得10
6秒前
tao完成签到,获得积分10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006