Simplicial Complex Neural Networks

超图 简单复形 理论计算机科学 计算机科学 图形 单纯形 复杂网络 数学 组合数学
作者
Hanrui Wu,Andy Yip,Jinyi Long,Jia Zhang,Michael K. Ng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (1): 561-575 被引量:13
标识
DOI:10.1109/tpami.2023.3323624
摘要

Graph-structured data, where nodes exhibit either pair-wise or high-order relations, are ubiquitous and essential in graph learning. Despite the great achievement made by existing graph learning models, these models use the direct information (edges or hyperedges) from graphs and do not adopt the underlying indirect information (hidden pair-wise or high-order relations). To address this issue, in this paper, we propose a general framework named Simplicial Complex Neural (SCN) network, in which we construct a simplicial complex based on the direct and indirect graph information from a graph so that all information can be employed in the complex network learning. Specifically, we learn representations of simplices by aggregating and integrating information from all the simplices together via layer-by-layer simplicial complex propagation. In consequence, the representations of nodes, edges, and other high-order simplices are obtained simultaneously and can be used for learning purposes. By making use of block matrix properties, we derive the theoretical bound of the simplicial complex filter learnt by the propagation and establish the generalization error bound of the proposed simplicial complex network. We perform extensive experiments on node (0-simplex), edge (1-simplex), and triangle (2-simplex) classifications, and promising results demonstrate the performance of the proposed method is better than that of existing graph and hypergraph network approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大黄蜂发布了新的文献求助10
1秒前
英姑应助guygun采纳,获得10
1秒前
Feng完成签到,获得积分10
2秒前
3秒前
花花完成签到,获得积分10
3秒前
一言矣完成签到 ,获得积分10
4秒前
海绵宝宝完成签到,获得积分10
5秒前
贪吃的猴子完成签到,获得积分10
5秒前
long完成签到 ,获得积分10
6秒前
研友_LOqqmZ发布了新的文献求助10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
kilig应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
清心淡如水完成签到,获得积分10
7秒前
Hao应助命运的X号采纳,获得10
8秒前
9秒前
10秒前
哭泣恋风完成签到 ,获得积分10
10秒前
zhizhzihzih完成签到,获得积分10
10秒前
10秒前
2568269431完成签到 ,获得积分10
11秒前
panzer发布了新的文献求助10
11秒前
11秒前
12秒前
smile发布了新的文献求助10
12秒前
13秒前
酷炫蚂蚁发布了新的文献求助10
13秒前
13秒前
Andy_Cheung完成签到,获得积分10
13秒前
feng完成签到,获得积分10
14秒前
maomao发布了新的文献求助10
14秒前
leena完成签到,获得积分10
14秒前
14秒前
青衣北风发布了新的文献求助10
15秒前
feng发布了新的文献求助10
15秒前
guygun发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824