Effect of deep neural network structure on the accuracy of NIR fluorescence molecular tomography reconstruction

人工神经网络 计算机科学 网络体系结构 有限元法 算法 网络模型 人工智能 断层摄影术 迭代重建 模式识别(心理学) 光学 物理 计算机安全 热力学
作者
Huiquan Wang,Y.A. Liu,Tianzi Feng,Jianyu Gao,Zhe Zhao,Guang Han,Jinhai Wang,Jinghong Miao
标识
DOI:10.1117/12.2686450
摘要

To overcome the ill-conditioning of the NIR fluorescence molecular tomography (FMT) inverse problem, neural networks are commonly used for reconstruction to improve the accuracy and reliability of imaging. This paper aims to investigate the impact of different neural network structures on the reconstruction performance of FMT for improved effect. In this study, the finite element solution of the Laplace-transformed time-domain coupled diffusion equation serves as the forward model for FMT, an improved stacked autoencoder (SAE) network is used and applied to FMT reconstruction. In the study, the SAE was set as a four layers network model structure, of which two layers were used for the hidden layer of the network. When the number of neurons in hidden layer 1 is smaller than hidden layer 2, the network is referred to as a decreasing network structure, and vice versa for an increasing network structure. The input data to the network consists of surface fluorescence intensity values collected by detectors around the heterogeneity. The output data of the network consists of fluorescence intensity values on partitioned nodes obtained through finite element method (FEM) partitioning. The experimental results demonstrate that the increasing network structure exhibits better imaging accuracy, fewer artifacts, and a more stable network model in FMT reconstruction. Through this study of the impact of SAE network architecture on FMT reconstruction, we have identified the optimal network model, which holds significant guidance for the application of neural networks in the field of FMT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助听闻采纳,获得10
1秒前
1秒前
LYH完成签到,获得积分10
1秒前
1秒前
慕青应助清脆依白采纳,获得10
2秒前
ding应助117采纳,获得10
2秒前
2秒前
2秒前
Owen应助T_KYG采纳,获得10
2秒前
3秒前
ioioio完成签到,获得积分10
3秒前
星熠完成签到,获得积分10
3秒前
青海盐湖所李阳阳完成签到 ,获得积分10
3秒前
wanci应助标致的夏天采纳,获得10
4秒前
4秒前
明天会更美好完成签到,获得积分10
5秒前
5秒前
干净的时光完成签到,获得积分10
5秒前
小鲤鱼发布了新的文献求助10
6秒前
巫马冷荷完成签到,获得积分10
6秒前
7秒前
7秒前
深情安青应助小名叫阿春采纳,获得10
7秒前
yyyyy发布了新的文献求助30
7秒前
霸气的梦露完成签到,获得积分10
7秒前
姜jiang发布了新的文献求助10
9秒前
yuyuyu完成签到,获得积分10
9秒前
9秒前
称心书蝶完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
louaq完成签到,获得积分10
10秒前
10秒前
guanghuiLI完成签到,获得积分10
10秒前
平常寒烟完成签到,获得积分10
10秒前
科研大印完成签到,获得积分10
10秒前
田様应助南北采纳,获得10
11秒前
天真怜南完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283704
求助须知:如何正确求助?哪些是违规求助? 4437469
关于积分的说明 13813675
捐赠科研通 4318220
什么是DOI,文献DOI怎么找? 2370348
邀请新用户注册赠送积分活动 1365683
关于科研通互助平台的介绍 1329143