Effect of deep neural network structure on the accuracy of NIR fluorescence molecular tomography reconstruction

人工神经网络 计算机科学 网络体系结构 有限元法 算法 网络模型 人工智能 断层摄影术 迭代重建 模式识别(心理学) 光学 物理 计算机安全 热力学
作者
Huiquan Wang,Y.A. Liu,Tianzi Feng,Jianyu Gao,Zhe Zhao,Guang Han,Jinhai Wang,Jinghong Miao
标识
DOI:10.1117/12.2686450
摘要

To overcome the ill-conditioning of the NIR fluorescence molecular tomography (FMT) inverse problem, neural networks are commonly used for reconstruction to improve the accuracy and reliability of imaging. This paper aims to investigate the impact of different neural network structures on the reconstruction performance of FMT for improved effect. In this study, the finite element solution of the Laplace-transformed time-domain coupled diffusion equation serves as the forward model for FMT, an improved stacked autoencoder (SAE) network is used and applied to FMT reconstruction. In the study, the SAE was set as a four layers network model structure, of which two layers were used for the hidden layer of the network. When the number of neurons in hidden layer 1 is smaller than hidden layer 2, the network is referred to as a decreasing network structure, and vice versa for an increasing network structure. The input data to the network consists of surface fluorescence intensity values collected by detectors around the heterogeneity. The output data of the network consists of fluorescence intensity values on partitioned nodes obtained through finite element method (FEM) partitioning. The experimental results demonstrate that the increasing network structure exhibits better imaging accuracy, fewer artifacts, and a more stable network model in FMT reconstruction. Through this study of the impact of SAE network architecture on FMT reconstruction, we have identified the optimal network model, which holds significant guidance for the application of neural networks in the field of FMT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akasazi完成签到,获得积分10
刚刚
刚刚
1秒前
李爱国应助123采纳,获得10
2秒前
公子扶腰发布了新的文献求助10
2秒前
ddssa1988发布了新的文献求助10
3秒前
4秒前
4秒前
善学以致用应助twotwomi采纳,获得10
4秒前
张雷应助nanlinhua采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
SAOKA发布了新的文献求助10
7秒前
crisis发布了新的文献求助10
7秒前
7秒前
ED应助研友_Z11kkZ采纳,获得10
8秒前
ye发布了新的文献求助10
8秒前
McbxM完成签到,获得积分10
8秒前
顾矜应助小黑球采纳,获得10
8秒前
9秒前
老婶子完成签到,获得积分0
10秒前
11秒前
杏子应助晨霭微凉采纳,获得10
12秒前
crisis完成签到,获得积分10
12秒前
13秒前
14秒前
ddssa1988完成签到,获得积分10
14秒前
凤凰之玉完成签到 ,获得积分10
14秒前
ylbb发布了新的文献求助10
15秒前
LL发布了新的文献求助20
15秒前
15秒前
sh131发布了新的文献求助10
19秒前
Amanda发布了新的文献求助10
19秒前
19秒前
沈顺利毕业完成签到,获得积分10
19秒前
GX应助HEIEI采纳,获得10
20秒前
英姑应助易烊干洗采纳,获得10
20秒前
一二三完成签到,获得积分20
21秒前
因几发布了新的文献求助10
23秒前
小马甲应助ylbb采纳,获得10
23秒前
ED应助研友_Z11kkZ采纳,获得10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152