Effect of deep neural network structure on the accuracy of NIR fluorescence molecular tomography reconstruction

人工神经网络 计算机科学 网络体系结构 有限元法 算法 网络模型 人工智能 模式识别(心理学) 物理 计算机安全 热力学
作者
Huiquan Wang,Yuqing liu,Tianzi Feng,Jianyu Gao,Zhe Zhao,Guang Han,Jinhai Wang,Jinghong Miao
标识
DOI:10.1117/12.2686450
摘要

To overcome the ill-conditioning of the NIR fluorescence molecular tomography (FMT) inverse problem, neural networks are commonly used for reconstruction to improve the accuracy and reliability of imaging. This paper aims to investigate the impact of different neural network structures on the reconstruction performance of FMT for improved effect. In this study, the finite element solution of the Laplace-transformed time-domain coupled diffusion equation serves as the forward model for FMT, an improved stacked autoencoder (SAE) network is used and applied to FMT reconstruction. In the study, the SAE was set as a four layers network model structure, of which two layers were used for the hidden layer of the network. When the number of neurons in hidden layer 1 is smaller than hidden layer 2, the network is referred to as a decreasing network structure, and vice versa for an increasing network structure. The input data to the network consists of surface fluorescence intensity values collected by detectors around the heterogeneity. The output data of the network consists of fluorescence intensity values on partitioned nodes obtained through finite element method (FEM) partitioning. The experimental results demonstrate that the increasing network structure exhibits better imaging accuracy, fewer artifacts, and a more stable network model in FMT reconstruction. Through this study of the impact of SAE network architecture on FMT reconstruction, we have identified the optimal network model, which holds significant guidance for the application of neural networks in the field of FMT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白蝶完成签到 ,获得积分10
刚刚
yanyan完成签到,获得积分10
1秒前
jyx应助高兴纸鹤采纳,获得10
1秒前
3秒前
3秒前
AXLL完成签到 ,获得积分10
6秒前
小王同学完成签到 ,获得积分10
8秒前
梅一一完成签到,获得积分10
9秒前
淡淡冰薇完成签到,获得积分20
10秒前
火眼金睛发布了新的文献求助10
11秒前
角鸮完成签到,获得积分10
11秒前
11秒前
ashore发布了新的文献求助10
11秒前
花儿在做实验完成签到,获得积分10
12秒前
123321发布了新的文献求助10
13秒前
诚心的若南完成签到,获得积分10
17秒前
YJH完成签到,获得积分10
17秒前
心靖完成签到,获得积分10
17秒前
18秒前
qing_he完成签到 ,获得积分10
18秒前
19秒前
芋圆完成签到,获得积分10
20秒前
sfzz完成签到,获得积分10
21秒前
Henry应助Cindy采纳,获得200
22秒前
rarfen发布了新的文献求助10
24秒前
脑洞疼应助ashore采纳,获得10
24秒前
面包完成签到,获得积分10
25秒前
26秒前
Henry应助Cindy采纳,获得200
27秒前
28秒前
默默荔枝完成签到 ,获得积分10
28秒前
28秒前
天天快乐应助obsession采纳,获得10
29秒前
30秒前
陈曦发布了新的文献求助10
30秒前
金烛关注了科研通微信公众号
31秒前
31秒前
31秒前
32秒前
rarfen完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187