Effect of deep neural network structure on the accuracy of NIR fluorescence molecular tomography reconstruction

人工神经网络 计算机科学 网络体系结构 有限元法 算法 网络模型 人工智能 断层摄影术 迭代重建 模式识别(心理学) 光学 物理 计算机安全 热力学
作者
Huiquan Wang,Y.A. Liu,Tianzi Feng,Jianyu Gao,Zhe Zhao,Guang Han,Jinhai Wang,Jinghong Miao
标识
DOI:10.1117/12.2686450
摘要

To overcome the ill-conditioning of the NIR fluorescence molecular tomography (FMT) inverse problem, neural networks are commonly used for reconstruction to improve the accuracy and reliability of imaging. This paper aims to investigate the impact of different neural network structures on the reconstruction performance of FMT for improved effect. In this study, the finite element solution of the Laplace-transformed time-domain coupled diffusion equation serves as the forward model for FMT, an improved stacked autoencoder (SAE) network is used and applied to FMT reconstruction. In the study, the SAE was set as a four layers network model structure, of which two layers were used for the hidden layer of the network. When the number of neurons in hidden layer 1 is smaller than hidden layer 2, the network is referred to as a decreasing network structure, and vice versa for an increasing network structure. The input data to the network consists of surface fluorescence intensity values collected by detectors around the heterogeneity. The output data of the network consists of fluorescence intensity values on partitioned nodes obtained through finite element method (FEM) partitioning. The experimental results demonstrate that the increasing network structure exhibits better imaging accuracy, fewer artifacts, and a more stable network model in FMT reconstruction. Through this study of the impact of SAE network architecture on FMT reconstruction, we have identified the optimal network model, which holds significant guidance for the application of neural networks in the field of FMT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高冷发布了新的文献求助10
刚刚
丘比特应助ZZY采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
jerry完成签到,获得积分10
2秒前
2秒前
权归尘发布了新的文献求助10
3秒前
搜集达人应助Natua采纳,获得10
4秒前
4秒前
5秒前
5秒前
6秒前
panpan发布了新的文献求助10
6秒前
6秒前
42blink发布了新的文献求助10
6秒前
7秒前
mjq发布了新的文献求助10
8秒前
ming完成签到,获得积分10
9秒前
彭于晏应助Ki_Ayasato采纳,获得10
10秒前
10秒前
10秒前
12完成签到,获得积分10
11秒前
11秒前
Qian发布了新的文献求助30
11秒前
ZZY发布了新的文献求助10
13秒前
13秒前
月下独酌发布了新的文献求助10
13秒前
干净雨安发布了新的文献求助10
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
TiAmo完成签到,获得积分20
18秒前
sopha完成签到,获得积分10
19秒前
浮游应助甜甜花卷采纳,获得10
19秒前
将军完成签到,获得积分10
20秒前
汤泡泡发布了新的文献求助10
22秒前
26秒前
海洋关注了科研通微信公众号
26秒前
大个应助某亮采纳,获得10
26秒前
李爱国应助敏感的明杰采纳,获得10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125340
求助须知:如何正确求助?哪些是违规求助? 4329194
关于积分的说明 13490551
捐赠科研通 4164032
什么是DOI,文献DOI怎么找? 2282685
邀请新用户注册赠送积分活动 1283829
关于科研通互助平台的介绍 1223099