Antisaturation fixed-time attitude tracking control based low-computation learning for uncertain quadrotor UAVs with external disturbances

控制理论(社会学) 稳健性(进化) 计算机科学 计算 李雅普诺夫函数 有界函数 滑模控制 趋同(经济学) 数学 非线性系统 控制(管理) 人工智能 算法 生物化学 量子力学 经济增长 基因 物理 数学分析 经济 化学
作者
Kang Liu,Po Yang,Lin Jiao,Rujing Wang,Zhe Yuan,Shifeng Dong
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:142: 108668-108668 被引量:1
标识
DOI:10.1016/j.ast.2023.108668
摘要

External disturbances, uncertain parameters, asymmetric saturation input, and high computational burden can significantly damage the attitude tracking control performance of uncertain quadrotor unmanned aerial vehicles (UAVs). To accomplish the high-precision attitude tracking control, this study proposes an antisaturation fixed-time attitude tracking control based low-computation learning. Firstly, a fixed-time state observer is constructed to estimate the system states in fixed time. Secondly, by developing the fast fixed-time stable system with the time-varying gain function, a nonsingular fast fixed-time sliding mode surface is designed to improve the convergence speed and avoid the singularity problem. Thirdly, to solve the problem of asymmetric input saturation, an auxiliary compensation system is integrated to regulate the control inputs. Subsequently, an adaptive neural network (NN) technology is used to overcome the negative effects of external disturbances and uncertain parameters, where the designed adaptive mechanism is to adjust a virtual parameter online instead of the weight vector of the NN, which has the characteristics of low computational burden and simple structure. The Lyapunov-based stability analysis concludes that the closed-loop system is practical fixed-time stable and the tracking errors can converge to bounded regions around the origin in fixed time independently of the initial system states. Finally, comparative results are given to demonstrate that compared with the existing controllers, the controller developed in this study can achieve stronger robustness, faster convergence, and saturation elimination with lower error-index values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyy发布了新的文献求助10
1秒前
Owen应助www采纳,获得10
1秒前
毛豆应助隐形的不愁采纳,获得10
2秒前
bias完成签到,获得积分10
2秒前
深情安青应助小美妞采纳,获得10
3秒前
ying发布了新的文献求助10
3秒前
款冬发布了新的文献求助10
4秒前
南波老六发布了新的文献求助10
4秒前
领导范儿应助李浅墨采纳,获得10
4秒前
4秒前
5秒前
琅千袭发布了新的文献求助10
5秒前
6秒前
我是老大应助霸气的惜寒采纳,获得10
6秒前
7秒前
Bo完成签到,获得积分10
8秒前
香菜完成签到 ,获得积分10
8秒前
顾矜应助现实的南珍采纳,获得10
8秒前
9秒前
擎天柱发布了新的文献求助10
10秒前
xx发布了新的文献求助10
10秒前
脑洞疼应助AlvinCZY采纳,获得10
11秒前
小慧完成签到,获得积分10
11秒前
11秒前
楠楠完成签到 ,获得积分10
11秒前
Double_N发布了新的文献求助10
12秒前
调研昵称发布了新的文献求助10
12秒前
tramp发布了新的文献求助10
13秒前
穆振家完成签到,获得积分10
14秒前
15秒前
wanci应助小慧采纳,获得10
15秒前
16秒前
科目三应助lulu采纳,获得30
16秒前
17秒前
研友_Z14Yln应助媛宝&硕宝采纳,获得10
17秒前
18秒前
QY完成签到,获得积分10
19秒前
Misty发布了新的文献求助10
20秒前
zjfmmu完成签到,获得积分10
21秒前
Zysplus发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178