Energy efficient task scheduling based on deep reinforcement learning in cloud environment: A specialized review

计算机科学 强化学习 云计算 调度(生产过程) 能源消耗 分布式计算 马尔可夫决策过程 两级调度 动态优先级调度 人工智能 马尔可夫过程 地铁列车时刻表 操作系统 数学优化 生态学 统计 数学 生物
作者
Huanhuan Hou,Siti Nuraishah Agos Jawaddi,Azlan Ismail
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 214-231 被引量:28
标识
DOI:10.1016/j.future.2023.10.002
摘要

The expanding scale of cloud data centers and the diversification of user services have led to an increase in energy consumption and greenhouse gas emissions, resulting in long-term detrimental effects on the environment. To address this issue, scheduling techniques that reduce energy usage have become a hot topic in cloud computing and cluster management. The Deep Reinforcement Learning (DRL) approach, which combines the advantages of Deep Learning and Reinforcement Learning, has shown promise in resolving scheduling problems in cloud computing. However, reviews of the literature on task scheduling that employ DRL techniques for reducing energy consumption are limited. In this paper, we survey and analyze energy consumption models used for scheduling goals, provide an overview of the DRL algorithms used in the literature, and quantitatively compare the model differences of Markov Decision Process elements. We also summarize the experimental platforms, datasets, and neural network structures used in the DRL algorithm. Finally, we analyze the research gap in DRL-based task scheduling and discuss existing challenges as well as future directions from various aspects. This paper contributes to the correlation perspective on the task scheduling problem with the DRL approach and provides a reference for in-depth research on the direction of DRL-based task scheduling research. Our findings suggest that DRL-based scheduling techniques can significantly reduce energy consumption in cloud data centers, making them a promising area for further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
cgh发布了新的文献求助10
2秒前
3秒前
filili完成签到,获得积分10
3秒前
烂漫的涫完成签到 ,获得积分10
5秒前
来了来了完成签到 ,获得积分10
5秒前
7秒前
一一完成签到,获得积分10
7秒前
浮游应助Qian采纳,获得10
7秒前
mtfx发布了新的文献求助20
7秒前
8秒前
8秒前
CipherSage应助微笑晓丝采纳,获得10
8秒前
Owen应助cgh采纳,获得10
9秒前
10秒前
浮游应助fzzf采纳,获得10
11秒前
11秒前
优美紫槐应助成就的鲂采纳,获得10
13秒前
14秒前
kakawang完成签到 ,获得积分10
14秒前
共享精神应助GuiChenli采纳,获得10
14秒前
无花果应助你好采纳,获得10
15秒前
汉堡包应助典雅的悟空采纳,获得10
15秒前
15秒前
hhj发布了新的文献求助10
15秒前
ym完成签到,获得积分10
15秒前
15秒前
勤恳以寒发布了新的文献求助10
16秒前
Laneyliu发布了新的文献求助10
16秒前
17秒前
HD发布了新的文献求助10
18秒前
18秒前
19秒前
深情安青应助hhj采纳,获得10
19秒前
哪吒之魔童闹海完成签到,获得积分10
20秒前
搜集达人应助杨天水采纳,获得10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176