Energy efficient task scheduling based on deep reinforcement learning in cloud environment: A specialized review

计算机科学 强化学习 云计算 调度(生产过程) 能源消耗 分布式计算 马尔可夫决策过程 两级调度 动态优先级调度 人工智能 马尔可夫过程 地铁列车时刻表 操作系统 数学优化 生态学 统计 生物 数学
作者
Huanhuan Hou,Siti Nuraishah Agos Jawaddi,Azlan Ismail
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:151: 214-231 被引量:13
标识
DOI:10.1016/j.future.2023.10.002
摘要

The expanding scale of cloud data centers and the diversification of user services have led to an increase in energy consumption and greenhouse gas emissions, resulting in long-term detrimental effects on the environment. To address this issue, scheduling techniques that reduce energy usage have become a hot topic in cloud computing and cluster management. The Deep Reinforcement Learning (DRL) approach, which combines the advantages of Deep Learning and Reinforcement Learning, has shown promise in resolving scheduling problems in cloud computing. However, reviews of the literature on task scheduling that employ DRL techniques for reducing energy consumption are limited. In this paper, we survey and analyze energy consumption models used for scheduling goals, provide an overview of the DRL algorithms used in the literature, and quantitatively compare the model differences of Markov Decision Process elements. We also summarize the experimental platforms, datasets, and neural network structures used in the DRL algorithm. Finally, we analyze the research gap in DRL-based task scheduling and discuss existing challenges as well as future directions from various aspects. This paper contributes to the correlation perspective on the task scheduling problem with the DRL approach and provides a reference for in-depth research on the direction of DRL-based task scheduling research. Our findings suggest that DRL-based scheduling techniques can significantly reduce energy consumption in cloud data centers, making them a promising area for further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助科研通管家采纳,获得10
刚刚
墩墩应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得30
1秒前
英姑应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
Xieyusen发布了新的文献求助10
1秒前
斜阳正浓发布了新的文献求助10
3秒前
苏silence发布了新的文献求助10
4秒前
深情安青应助Mrmao0213采纳,获得10
7秒前
阿北发布了新的文献求助20
7秒前
8秒前
8秒前
9秒前
CC柚完成签到,获得积分10
9秒前
10秒前
molotov发布了新的文献求助10
10秒前
小马甲应助唐唐采纳,获得10
11秒前
NexusExplorer应助CXS采纳,获得10
11秒前
海浪发布了新的文献求助10
13秒前
英俊的铭应助维尼采纳,获得10
13秒前
科研小白发布了新的文献求助10
14秒前
今后应助22222采纳,获得10
14秒前
苏silence发布了新的文献求助10
14秒前
善学以致用应助zhanyuji采纳,获得30
14秒前
孟子发布了新的文献求助10
15秒前
舒心钧完成签到 ,获得积分10
15秒前
怕孤单的幼荷完成签到 ,获得积分10
16秒前
dada发布了新的文献求助10
16秒前
18秒前
FashionBoy应助重要涔雨采纳,获得10
18秒前
20秒前
li发布了新的文献求助10
22秒前
坚强怀绿完成签到 ,获得积分10
22秒前
22秒前
科研小白完成签到,获得积分10
22秒前
22秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517