Energy efficient task scheduling based on deep reinforcement learning in cloud environment: A specialized review

计算机科学 强化学习 云计算 调度(生产过程) 能源消耗 分布式计算 马尔可夫决策过程 两级调度 动态优先级调度 人工智能 马尔可夫过程 地铁列车时刻表 操作系统 数学优化 生态学 统计 数学 生物
作者
Huanhuan Hou,Siti Nuraishah Agos Jawaddi,Azlan Ismail
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 214-231 被引量:28
标识
DOI:10.1016/j.future.2023.10.002
摘要

The expanding scale of cloud data centers and the diversification of user services have led to an increase in energy consumption and greenhouse gas emissions, resulting in long-term detrimental effects on the environment. To address this issue, scheduling techniques that reduce energy usage have become a hot topic in cloud computing and cluster management. The Deep Reinforcement Learning (DRL) approach, which combines the advantages of Deep Learning and Reinforcement Learning, has shown promise in resolving scheduling problems in cloud computing. However, reviews of the literature on task scheduling that employ DRL techniques for reducing energy consumption are limited. In this paper, we survey and analyze energy consumption models used for scheduling goals, provide an overview of the DRL algorithms used in the literature, and quantitatively compare the model differences of Markov Decision Process elements. We also summarize the experimental platforms, datasets, and neural network structures used in the DRL algorithm. Finally, we analyze the research gap in DRL-based task scheduling and discuss existing challenges as well as future directions from various aspects. This paper contributes to the correlation perspective on the task scheduling problem with the DRL approach and provides a reference for in-depth research on the direction of DRL-based task scheduling research. Our findings suggest that DRL-based scheduling techniques can significantly reduce energy consumption in cloud data centers, making them a promising area for further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
小马甲应助眯眯眼的板栗采纳,获得10
1秒前
1秒前
1秒前
张勇振完成签到,获得积分10
1秒前
茱萸完成签到,获得积分10
2秒前
火星上的醉山完成签到,获得积分10
2秒前
小吉麻麻发布了新的文献求助10
2秒前
HCLonely发布了新的文献求助10
3秒前
3秒前
翟紫萌完成签到,获得积分10
3秒前
大地上的鱼完成签到,获得积分10
3秒前
杨杨得亿完成签到,获得积分10
3秒前
妙妙0关注了科研通微信公众号
3秒前
3秒前
3秒前
NICKPLZ完成签到,获得积分10
3秒前
王小红完成签到,获得积分10
4秒前
阿泽发布了新的文献求助10
4秒前
周ZHOU发布了新的文献求助10
4秒前
Fall完成签到,获得积分10
4秒前
bbh完成签到,获得积分10
5秒前
orixero应助Song采纳,获得10
5秒前
5秒前
科研通AI6应助rydrb采纳,获得10
5秒前
猪猪hero应助聪慧的如彤采纳,获得10
5秒前
5秒前
6秒前
安珊发布了新的文献求助30
6秒前
星辰大海应助大帅采纳,获得10
6秒前
draw9708发布了新的文献求助10
7秒前
林献关注了科研通微信公众号
7秒前
万能图书馆应助osachon采纳,获得10
7秒前
7秒前
小也同学发布了新的文献求助10
7秒前
zqy完成签到,获得积分10
8秒前
华仔应助温暖冰颜采纳,获得10
8秒前
苹果完成签到,获得积分20
8秒前
lacusw完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188