Towards robust plant disease diagnosis with hard-sample re-mining strategy

计算机科学 样品(材料) 人工智能 数据挖掘 机器学习 班级(哲学) 植物病害 训练集 目标检测 模式识别(心理学) 化学 生物技术 色谱法 生物
作者
Quan Huu,Atsushi Fukuda,Satoshi Kagiwada,Hiroyuki Uga,Nobusuke Iwasaki,Hitoshi Iyatomi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:215: 108375-108375 被引量:1
标识
DOI:10.1016/j.compag.2023.108375
摘要

With rich annotation information, object detection-based automated plant disease diagnosis systems (e.g., YOLO-based systems) often provide advantages over classification-based systems (e.g., EfficientNet-based), such as the ability to detect disease locations and superior classification performance. One drawback of these detection systems is dealing with unannotated healthy data with no real symptoms present. In practice, healthy plant data appear to be very similar to many disease data. Thus, those models often produce mis-detected boxes on healthy images. In addition, labeling new data for detection models is typically time-consuming. Hard-sample mining (HSM) is a common technique for re-training a model by using the mis-detected boxes as new training samples. However, blindly selecting an arbitrary amount of hard-sample for re-training will result in the degradation of diagnostic performance for other diseases due to the high similarity between disease and healthy data. In this paper, we propose a simple but effective training strategy called hard-sample re-mining (HSReM), which is designed to enhance the diagnostic performance of healthy data and simultaneously improve the performance of disease data by strategically selecting hard-sample training images at an appropriate level. Experiments based on two practical in-field eight-class cucumber and ten-class tomato datasets (42.7K and 35.6K images) show that our HSReM training strategy leads to a substantial improvement in the overall diagnostic performance on large-scale unseen data. Specifically, the object detection model trained using the HSReM strategy not only achieved superior results as compared to the classification-based state-of-the-art EfficientNetV2-Large model and the original object detection model, but also outperformed the model using the HSM strategy in multiple evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAE上路到上吊完成签到,获得积分10
1秒前
1秒前
shore完成签到,获得积分10
1秒前
1秒前
瘦瘦白薇完成签到 ,获得积分10
1秒前
WHH发布了新的文献求助10
1秒前
笔记本完成签到,获得积分0
1秒前
佳无夜完成签到,获得积分10
2秒前
长情琦发布了新的文献求助10
2秒前
TTYYI完成签到,获得积分10
2秒前
大气的鹭洋完成签到,获得积分10
2秒前
husy完成签到,获得积分10
2秒前
2秒前
小蘑菇应助chen采纳,获得10
2秒前
LordRedScience完成签到,获得积分10
3秒前
弧光完成签到 ,获得积分10
3秒前
3秒前
糖糖完成签到 ,获得积分10
4秒前
快乐的海亦完成签到,获得积分10
6秒前
huang发布了新的文献求助10
6秒前
7秒前
lin完成签到,获得积分10
7秒前
kuangki完成签到,获得积分10
7秒前
顾矜应助大王叫我来巡山采纳,获得10
7秒前
恍若发布了新的文献求助10
7秒前
可靠世平发布了新的文献求助10
8秒前
豆豆完成签到,获得积分10
8秒前
香蕉觅云应助熊熊采纳,获得10
8秒前
唐水之完成签到,获得积分10
8秒前
9秒前
坦率的世开完成签到,获得积分10
9秒前
于鑫发布了新的文献求助10
9秒前
天天快乐应助Yuan采纳,获得30
10秒前
WHH完成签到,获得积分10
10秒前
zxy完成签到,获得积分10
10秒前
10秒前
爆米花应助平淡的寄风采纳,获得10
10秒前
zhongxuejie完成签到,获得积分20
11秒前
神勇契完成签到,获得积分10
11秒前
思源应助爱科研的粥粥采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904