Towards robust plant disease diagnosis with hard-sample re-mining strategy

计算机科学 样品(材料) 人工智能 数据挖掘 机器学习 班级(哲学) 植物病害 训练集 目标检测 模式识别(心理学) 化学 生物技术 色谱法 生物
作者
Quan Huu,Atsushi Fukuda,Satoshi Kagiwada,Hiroyuki Uga,Nobusuke Iwasaki,Hitoshi Iyatomi
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108375-108375 被引量:1
标识
DOI:10.1016/j.compag.2023.108375
摘要

With rich annotation information, object detection-based automated plant disease diagnosis systems (e.g., YOLO-based systems) often provide advantages over classification-based systems (e.g., EfficientNet-based), such as the ability to detect disease locations and superior classification performance. One drawback of these detection systems is dealing with unannotated healthy data with no real symptoms present. In practice, healthy plant data appear to be very similar to many disease data. Thus, those models often produce mis-detected boxes on healthy images. In addition, labeling new data for detection models is typically time-consuming. Hard-sample mining (HSM) is a common technique for re-training a model by using the mis-detected boxes as new training samples. However, blindly selecting an arbitrary amount of hard-sample for re-training will result in the degradation of diagnostic performance for other diseases due to the high similarity between disease and healthy data. In this paper, we propose a simple but effective training strategy called hard-sample re-mining (HSReM), which is designed to enhance the diagnostic performance of healthy data and simultaneously improve the performance of disease data by strategically selecting hard-sample training images at an appropriate level. Experiments based on two practical in-field eight-class cucumber and ten-class tomato datasets (42.7K and 35.6K images) show that our HSReM training strategy leads to a substantial improvement in the overall diagnostic performance on large-scale unseen data. Specifically, the object detection model trained using the HSReM strategy not only achieved superior results as compared to the classification-based state-of-the-art EfficientNetV2-Large model and the original object detection model, but also outperformed the model using the HSM strategy in multiple evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽松鼠发布了新的文献求助10
刚刚
缘分完成签到,获得积分10
2秒前
liuweiwei完成签到 ,获得积分10
2秒前
吉吉国王完成签到 ,获得积分10
3秒前
行萱完成签到 ,获得积分10
4秒前
皮皮完成签到,获得积分20
4秒前
生动白开水完成签到,获得积分10
6秒前
cookie完成签到,获得积分10
7秒前
阿巴完成签到 ,获得积分10
7秒前
GD完成签到,获得积分10
7秒前
善良曲奇完成签到 ,获得积分10
9秒前
zzx完成签到,获得积分10
9秒前
不过尔尔完成签到 ,获得积分10
9秒前
老迟到的土豆完成签到 ,获得积分10
10秒前
wjswift完成签到,获得积分10
11秒前
zy大章鱼完成签到,获得积分10
11秒前
bill应助胡质斌采纳,获得10
11秒前
文静醉易完成签到,获得积分10
11秒前
MM完成签到,获得积分10
13秒前
爱听歌寄云完成签到 ,获得积分10
15秒前
halona完成签到,获得积分10
16秒前
gouyanju完成签到,获得积分10
16秒前
骑猪看日落完成签到,获得积分10
17秒前
17秒前
做自己的太阳应助mmssdd采纳,获得10
17秒前
还单身的笑翠完成签到 ,获得积分10
18秒前
方便面条子完成签到 ,获得积分10
18秒前
19秒前
YangSY完成签到,获得积分10
19秒前
小妮完成签到 ,获得积分10
21秒前
共享精神应助健忘的千凡采纳,获得10
21秒前
22秒前
宋北北完成签到,获得积分10
22秒前
Annie完成签到 ,获得积分10
23秒前
111发布了新的文献求助10
24秒前
labordoc完成签到,获得积分10
25秒前
雪白的夜香完成签到,获得积分10
25秒前
whatever发布了新的文献求助200
25秒前
犹豫小海豚完成签到,获得积分10
25秒前
x1完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565