Biomining for sustainable recovery of rare earth elements from mining waste: A comprehensive review
废物管理
环境科学
稀土
工程类
化学
矿物学
作者
Hoang Nhat Phong Vo,Soroosh Danaee,Ho Truong Nam Hai,Lai Nguyen Huy,Tuan A.H. Nguyen,Thi Minh Hong Nguyen,Unnikrishnan Kuzhiumparambil,Mikael Kim,Long D. Nghiem,Peter J. Ralph
Rare earth elements (REEs) are essential for advanced manufacturing (e.g., renewable energy, military equipment, electric vehicles); hence, the recovery of REEs from low-grade resources has become increasingly important to address their growing demand. Depending on specific mining sites, its geological conditions, and sociodemographic backgrounds, mining waste has been identified as a source of REEs in various concentrations and abundance. Yttrium, cerium, and neodymium are the most common REEs in mining waste streams (50 to 300 μg/L). Biomining has emerged as a viable option for REEs recovery due to its reduced environmental impact, along with reduced capital investment compared to traditional recovery methods. This paper aims to review (i) the characteristics of mining waste as a low-grade REEs resource, (ii) the key operating principles of biomining technologies for REEs recovery, (iii) the effects of operating conditions and matrix on REEs recovery, and (iv) the sustainability of REEs recovery through biomining technologies. Six types of biomining will be examined in this review: bioleaching, bioweathering, biosorption, bioaccumulation, bioprecipitation and bioflotation. Based on a SWOT analyses and techno-economic assessments (TEA), biomining technologies have been found to be effective and efficient in recovering REEs from low-grade sources. Through TEA, coal ash has been shown to return the highest profit amongst mining waste streams.