生物炼制
生命周期评估
废物管理
环境科学
城市固体废物
厌氧消化
环境影响评价
废物处理
绿色废弃物
生物燃料
污水处理
工程类
堆肥
生产(经济)
化学
宏观经济学
经济
生态学
有机化学
生物
甲烷
作者
Haile Ma,Yulong Wei,Fu‐Ren F. Fan,Ming Gao,Qunhui Wang
标识
DOI:10.1016/j.scitotenv.2023.168731
摘要
Since the implementation of the waste separation policy, the disposal of source-separated food waste (FW) has been more strictly required. Traditional source-separated FW treatment technologies, such as anaerobic digestion (AD) and aerobic composting (AC), suffer from low resource utilization efficiency and poor economic benefits. It is one of the main limiting factors for the promotion of waste separation. Life cycle assessment (LCA) was conducted for five municipal solid waste (MSW) treatment technologies, compared their environmental impacts, and analyzed the impact of waste separation ratios to determine whether biorefinery is a promising way to support waste source separation. The results showed that black soldier fly (BSF) treatment had the lowest net global warming potential (GWP) of all technologies, reduced by 40.8 % relative to the non-source-separated treatment. Ethanol production had the second-lowest net environmental impact potential because bioethanol replaces fossil fuel to avoid the emission of pollutants from its combustion. When two biorefinery technologies with excellent efficiency to avoid environmental impact are used to treat source-separated FW, the increase in the percentage of waste separation will help reduce the environmental impact of MSW treatment. The application of biorefinery technologies is considered a viable option for source-separated FW treatment. AC should not be widely promoted because it showed the worst net environmental benefits, and waste separation will elevate the environmental impact of its treatment process.
科研通智能强力驱动
Strongly Powered by AbleSci AI