Research on Hyperspectral Modeling of Total Iron Content in Soil Applying LSSVR and CNN Based on Shannon Entropy Wavelet Packet Transform

小波 计算机科学 高光谱成像 粒子群优化 小波包分解 模式识别(心理学) 算法 人工智能 小波变换
作者
Weichao Liu,Hongyuan Huo,Zhou Ping,Mingyue Li,Yuzhen Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (19): 4681-4681 被引量:2
标识
DOI:10.3390/rs15194681
摘要

The influence of some seemingly anomalous samples on modeling is often ignored in the quantitative prediction of soil composition modeling with hyperspectral data. Soil spectral transformation based on wavelet packet technology only performs pruning and threshold filtering based on experience. The feature bands selected by the Pearson correlation coefficient method often have high redundancy. To solve these problems, this paper carried out a study of the prediction of soil total iron composition based on a new method. First, regarding the problem of abnormal samples, the Monte Carlo method based on particle swarm optimization (PSO) is used to screen abnormal samples. Second, feature representation based on Shannon entropy is adopted for wavelet packet processing. The amount of information held by the wavelet packet node is used to decide whether to cut the node. Third, the feature bands selected based on the correlation coefficient and the competitive adaptive reweighted sampling (CARS) algorithm using the least squares support vector regression (LSSVR) are applied to the soil spectra before and after wavelet packet processing. Finally, the Fe content was calculated based on a 1D convolutional neural network (1D-CNN). The results show that: (1) The Monte Carlo method based on particle swarm optimization and modeling multiple times was able to handle the abnormal samples. (2) Based on the Shannon entropy wavelet packet transformation, simple operations could simultaneously preserve the spectral information while removing high-frequency noise from the spectrum, effectively improving the correlation between soil spectra and content. (3) The 1D-CNN with added residual blocks could also achieve better results in soil hyperspectral modeling with few samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lix完成签到,获得积分20
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
无极微光应助给好评采纳,获得20
3秒前
琼琚完成签到 ,获得积分10
3秒前
风清扬发布了新的文献求助10
4秒前
4秒前
lix发布了新的文献求助10
5秒前
赘婿应助楚明允采纳,获得10
5秒前
赘婿应助楚明允采纳,获得10
5秒前
脑洞疼应助楚明允采纳,获得10
5秒前
小二郎应助楚明允采纳,获得10
5秒前
酷波er应助楚明允采纳,获得10
5秒前
5秒前
September发布了新的文献求助10
5秒前
MuGen完成签到,获得积分10
5秒前
调皮访烟发布了新的文献求助10
5秒前
6秒前
科研通AI6.1应助一一采纳,获得10
6秒前
黑小虎少主完成签到,获得积分10
6秒前
7秒前
8秒前
科研鸟发布了新的文献求助10
9秒前
脑洞疼应助易安采纳,获得10
9秒前
10秒前
fuchao发布了新的文献求助10
10秒前
小揭完成签到,获得积分10
10秒前
完犊子发布了新的文献求助10
10秒前
Akim应助蔡蔡不菜菜采纳,获得10
10秒前
11秒前
Lucas应助zzz采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
云里发布了新的文献求助10
14秒前
14秒前
今后应助Aba采纳,获得30
14秒前
ahh关注了科研通微信公众号
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753740
求助须知:如何正确求助?哪些是违规求助? 5482722
关于积分的说明 15378869
捐赠科研通 4892622
什么是DOI,文献DOI怎么找? 2631405
邀请新用户注册赠送积分活动 1579422
关于科研通互助平台的介绍 1535129