Research on Hyperspectral Modeling of Total Iron Content in Soil Applying LSSVR and CNN Based on Shannon Entropy Wavelet Packet Transform

小波 计算机科学 高光谱成像 粒子群优化 小波包分解 模式识别(心理学) 算法 人工智能 小波变换
作者
Weichao Liu,Hongyuan Huo,Zhou Ping,Mingyue Li,Yuzhen Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (19): 4681-4681 被引量:2
标识
DOI:10.3390/rs15194681
摘要

The influence of some seemingly anomalous samples on modeling is often ignored in the quantitative prediction of soil composition modeling with hyperspectral data. Soil spectral transformation based on wavelet packet technology only performs pruning and threshold filtering based on experience. The feature bands selected by the Pearson correlation coefficient method often have high redundancy. To solve these problems, this paper carried out a study of the prediction of soil total iron composition based on a new method. First, regarding the problem of abnormal samples, the Monte Carlo method based on particle swarm optimization (PSO) is used to screen abnormal samples. Second, feature representation based on Shannon entropy is adopted for wavelet packet processing. The amount of information held by the wavelet packet node is used to decide whether to cut the node. Third, the feature bands selected based on the correlation coefficient and the competitive adaptive reweighted sampling (CARS) algorithm using the least squares support vector regression (LSSVR) are applied to the soil spectra before and after wavelet packet processing. Finally, the Fe content was calculated based on a 1D convolutional neural network (1D-CNN). The results show that: (1) The Monte Carlo method based on particle swarm optimization and modeling multiple times was able to handle the abnormal samples. (2) Based on the Shannon entropy wavelet packet transformation, simple operations could simultaneously preserve the spectral information while removing high-frequency noise from the spectrum, effectively improving the correlation between soil spectra and content. (3) The 1D-CNN with added residual blocks could also achieve better results in soil hyperspectral modeling with few samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lesterem完成签到 ,获得积分10
2秒前
lamborghini193完成签到,获得积分10
3秒前
执着凡梦发布了新的文献求助10
4秒前
金轩完成签到 ,获得积分10
4秒前
淡如水完成签到 ,获得积分10
7秒前
9秒前
9秒前
西扬完成签到 ,获得积分10
9秒前
sydhwo完成签到 ,获得积分10
10秒前
CipherSage应助科研通管家采纳,获得10
19秒前
24秒前
现实的曼安完成签到 ,获得积分10
25秒前
28秒前
我就想看看文献完成签到 ,获得积分10
30秒前
peterlzb1234567完成签到,获得积分10
32秒前
njseu完成签到 ,获得积分10
36秒前
独特觅翠完成签到 ,获得积分10
44秒前
听话的白易完成签到,获得积分10
45秒前
随便完成签到 ,获得积分10
50秒前
缥缈的闭月完成签到,获得积分10
53秒前
Tianju完成签到,获得积分10
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
抹缇卡完成签到 ,获得积分10
1分钟前
萝卜丁完成签到 ,获得积分10
1分钟前
柴郡喵完成签到,获得积分10
1分钟前
00完成签到 ,获得积分10
1分钟前
大个应助咯咯咯采纳,获得30
1分钟前
绿色心情完成签到 ,获得积分10
2分钟前
落叶完成签到 ,获得积分10
2分钟前
李思晴完成签到 ,获得积分10
2分钟前
权小夏完成签到 ,获得积分10
2分钟前
英姑应助科研通管家采纳,获得20
2分钟前
无花果应助科研通管家采纳,获得30
2分钟前
yi完成签到 ,获得积分10
2分钟前
大王869完成签到 ,获得积分10
2分钟前
昱昱完成签到 ,获得积分10
2分钟前
Wsyyy完成签到 ,获得积分10
2分钟前
Suagy完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162364
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899821
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142