Research on Hyperspectral Modeling of Total Iron Content in Soil Applying LSSVR and CNN Based on Shannon Entropy Wavelet Packet Transform

小波 计算机科学 高光谱成像 粒子群优化 小波包分解 模式识别(心理学) 算法 人工智能 小波变换
作者
Weichao Liu,Hongyuan Huo,Zhou Ping,Mingyue Li,Yuzhen Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (19): 4681-4681 被引量:2
标识
DOI:10.3390/rs15194681
摘要

The influence of some seemingly anomalous samples on modeling is often ignored in the quantitative prediction of soil composition modeling with hyperspectral data. Soil spectral transformation based on wavelet packet technology only performs pruning and threshold filtering based on experience. The feature bands selected by the Pearson correlation coefficient method often have high redundancy. To solve these problems, this paper carried out a study of the prediction of soil total iron composition based on a new method. First, regarding the problem of abnormal samples, the Monte Carlo method based on particle swarm optimization (PSO) is used to screen abnormal samples. Second, feature representation based on Shannon entropy is adopted for wavelet packet processing. The amount of information held by the wavelet packet node is used to decide whether to cut the node. Third, the feature bands selected based on the correlation coefficient and the competitive adaptive reweighted sampling (CARS) algorithm using the least squares support vector regression (LSSVR) are applied to the soil spectra before and after wavelet packet processing. Finally, the Fe content was calculated based on a 1D convolutional neural network (1D-CNN). The results show that: (1) The Monte Carlo method based on particle swarm optimization and modeling multiple times was able to handle the abnormal samples. (2) Based on the Shannon entropy wavelet packet transformation, simple operations could simultaneously preserve the spectral information while removing high-frequency noise from the spectrum, effectively improving the correlation between soil spectra and content. (3) The 1D-CNN with added residual blocks could also achieve better results in soil hyperspectral modeling with few samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ahh完成签到 ,获得积分10
1秒前
juzi完成签到 ,获得积分10
1秒前
小小发布了新的文献求助30
2秒前
123123完成签到,获得积分20
2秒前
追莲永不言弃完成签到,获得积分10
2秒前
zhang完成签到,获得积分10
3秒前
hanhan完成签到,获得积分10
4秒前
4秒前
5秒前
天气不错完成签到,获得积分10
5秒前
222222发布了新的文献求助10
5秒前
5秒前
6秒前
拼搏的凤完成签到,获得积分10
7秒前
微风正好完成签到 ,获得积分10
7秒前
虚影完成签到,获得积分10
8秒前
9秒前
平常的青荷完成签到,获得积分10
9秒前
了尘完成签到,获得积分10
9秒前
静水流深完成签到,获得积分10
9秒前
乔治发布了新的文献求助10
9秒前
lishuaihua发布了新的文献求助10
9秒前
娇气的背包完成签到,获得积分10
10秒前
lzw发布了新的文献求助10
10秒前
222222完成签到,获得积分20
12秒前
忧伤的觅珍完成签到,获得积分10
12秒前
汉堡包应助asdfgh采纳,获得10
14秒前
朽木完成签到 ,获得积分10
14秒前
14秒前
古古怪界丶黑大帅完成签到,获得积分10
14秒前
景平完成签到,获得积分10
14秒前
超帅的开山完成签到 ,获得积分10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
Zikc完成签到,获得积分10
16秒前
溆玉碎兰笑完成签到 ,获得积分10
17秒前
19秒前
自己的样子好好看完成签到,获得积分10
19秒前
稳重的秋天完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325860
求助须知:如何正确求助?哪些是违规求助? 4466190
关于积分的说明 13895622
捐赠科研通 4358576
什么是DOI,文献DOI怎么找? 2394125
邀请新用户注册赠送积分活动 1387563
关于科研通互助平台的介绍 1358521