Research on Hyperspectral Modeling of Total Iron Content in Soil Applying LSSVR and CNN Based on Shannon Entropy Wavelet Packet Transform

小波 计算机科学 高光谱成像 粒子群优化 小波包分解 模式识别(心理学) 算法 人工智能 小波变换
作者
Weichao Liu,Hongyuan Huo,Zhou Ping,Mingyue Li,Yuzhen Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (19): 4681-4681 被引量:2
标识
DOI:10.3390/rs15194681
摘要

The influence of some seemingly anomalous samples on modeling is often ignored in the quantitative prediction of soil composition modeling with hyperspectral data. Soil spectral transformation based on wavelet packet technology only performs pruning and threshold filtering based on experience. The feature bands selected by the Pearson correlation coefficient method often have high redundancy. To solve these problems, this paper carried out a study of the prediction of soil total iron composition based on a new method. First, regarding the problem of abnormal samples, the Monte Carlo method based on particle swarm optimization (PSO) is used to screen abnormal samples. Second, feature representation based on Shannon entropy is adopted for wavelet packet processing. The amount of information held by the wavelet packet node is used to decide whether to cut the node. Third, the feature bands selected based on the correlation coefficient and the competitive adaptive reweighted sampling (CARS) algorithm using the least squares support vector regression (LSSVR) are applied to the soil spectra before and after wavelet packet processing. Finally, the Fe content was calculated based on a 1D convolutional neural network (1D-CNN). The results show that: (1) The Monte Carlo method based on particle swarm optimization and modeling multiple times was able to handle the abnormal samples. (2) Based on the Shannon entropy wavelet packet transformation, simple operations could simultaneously preserve the spectral information while removing high-frequency noise from the spectrum, effectively improving the correlation between soil spectra and content. (3) The 1D-CNN with added residual blocks could also achieve better results in soil hyperspectral modeling with few samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
testmanfuxk完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
hay发布了新的文献求助10
3秒前
iknj发布了新的文献求助10
4秒前
shun完成签到,获得积分10
5秒前
山前明月发布了新的文献求助10
5秒前
CipherSage应助顺利凌寒采纳,获得10
6秒前
亦犹未进完成签到,获得积分10
7秒前
7秒前
水水的完成签到 ,获得积分10
8秒前
诚心的丹秋完成签到,获得积分10
9秒前
Nivis完成签到 ,获得积分10
10秒前
rui完成签到,获得积分10
11秒前
彭于晏应助Yuanyuan采纳,获得10
12秒前
橙星星完成签到,获得积分20
12秒前
priss111发布了新的文献求助10
12秒前
pine完成签到 ,获得积分10
13秒前
14秒前
山前明月完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
OvO发布了新的文献求助10
21秒前
21秒前
孙浚涵发布了新的文献求助10
22秒前
SciGPT应助魂断红颜采纳,获得10
22秒前
年轻的醉冬完成签到 ,获得积分10
23秒前
23秒前
24秒前
丘比特应助唠叨的白曼采纳,获得10
24秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
26秒前
hatchio完成签到,获得积分10
26秒前
cc完成签到,获得积分10
26秒前
Petrichor发布了新的文献求助10
28秒前
Hhhhhhhhhhh完成签到,获得积分10
28秒前
依紫发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365