亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerated Safety Testing for Highly Automated Vehicles: Application and Capability Comparison of Surrogate Models

可能性 计算机科学 过程(计算) 理论(学习稳定性) 可靠性工程 选择(遗传算法) 考试(生物学) 替代模型 风险分析(工程) 机器学习 工程类 逻辑回归 操作系统 古生物学 生物 医学
作者
He Zhang,Jian Sun,Ye Tian
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2409-2418 被引量:1
标识
DOI:10.1109/tiv.2023.3319158
摘要

With the gradual perfection of Highly Automated Vehicles (HAVs), it is obligatory to assess their safety performance in simulation that mirrors the real-world driving environment. However, the minimal likelihood of exposure to risky events can result in an extremely time-consuming testing process. To address this issue, we applied a surrogate-based method to expedite scenario-based simulated safety testing for HAVs. Model-based surrogates can quickly approximate the results of untested scenarios, thereby facilitating the search for risky scenarios. Car-following and Cut-in scenarios were chosen as two representative Operational Design Domains (ODDs) with different dimensions for case study. Thus, the capabilities of various Surrogate Models (SMs) can be examined in depth. Utilizing the HighD data, two testing ODDs were constructed to be consistent with naturalistic distribution. We demonstrated that the performances of six mainstream SMs differ significantly as the frequency of risky scenarios decreases. Additionally, we conducted multiple rounds of tests to compare the stability of SMs. We also presented a proposal on SMs selection according to the complexity of ODDs and the rarity of risky scenarios. Compared with random testing, the surrogate-based method can search for 4 times as many high-risk Car-following scenarios with only 4% of the test resources, showing great potential in accelerating the testing process. Notably, when the targeted scenarios are not rare in high-dimensional ODD, the calculation simplicity of SMs is the most important factor. Even random testing can be a viable option in such circumstances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
10秒前
monica完成签到 ,获得积分10
19秒前
饱满含玉完成签到,获得积分10
23秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得30
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
Criminology34应助科研通管家采纳,获得30
44秒前
Criminology34应助科研通管家采纳,获得10
44秒前
安青兰完成签到 ,获得积分10
56秒前
ppppp发布了新的文献求助10
1分钟前
潜行者完成签到 ,获得积分10
1分钟前
小状元完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
槙岛圣护发布了新的文献求助15
2分钟前
ajing完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
3分钟前
王豆豆发布了新的文献求助10
3分钟前
王豆豆完成签到,获得积分10
3分钟前
顾矜应助木叶采纳,获得10
3分钟前
3分钟前
lyt完成签到,获得积分10
3分钟前
喜悦的毛衣完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助友好的尔容采纳,获得10
3分钟前
Adc应助槙岛圣护采纳,获得15
4分钟前
机智的夜云完成签到,获得积分10
4分钟前
烟花应助祖宛凝采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5828910
求助须知:如何正确求助?哪些是违规求助? 6038678
关于积分的说明 15575901
捐赠科研通 4948513
什么是DOI,文献DOI怎么找? 2666311
邀请新用户注册赠送积分活动 1611955
关于科研通互助平台的介绍 1566968