Accelerated Safety Testing for Highly Automated Vehicles: Application and Capability Comparison of Surrogate Models

可能性 计算机科学 过程(计算) 理论(学习稳定性) 可靠性工程 选择(遗传算法) 考试(生物学) 替代模型 风险分析(工程) 机器学习 工程类 逻辑回归 操作系统 古生物学 生物 医学
作者
He Zhang,Jian Sun,Ye Tian
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2409-2418 被引量:1
标识
DOI:10.1109/tiv.2023.3319158
摘要

With the gradual perfection of Highly Automated Vehicles (HAVs), it is obligatory to assess their safety performance in simulation that mirrors the real-world driving environment. However, the minimal likelihood of exposure to risky events can result in an extremely time-consuming testing process. To address this issue, we applied a surrogate-based method to expedite scenario-based simulated safety testing for HAVs. Model-based surrogates can quickly approximate the results of untested scenarios, thereby facilitating the search for risky scenarios. Car-following and Cut-in scenarios were chosen as two representative Operational Design Domains (ODDs) with different dimensions for case study. Thus, the capabilities of various Surrogate Models (SMs) can be examined in depth. Utilizing the HighD data, two testing ODDs were constructed to be consistent with naturalistic distribution. We demonstrated that the performances of six mainstream SMs differ significantly as the frequency of risky scenarios decreases. Additionally, we conducted multiple rounds of tests to compare the stability of SMs. We also presented a proposal on SMs selection according to the complexity of ODDs and the rarity of risky scenarios. Compared with random testing, the surrogate-based method can search for 4 times as many high-risk Car-following scenarios with only 4% of the test resources, showing great potential in accelerating the testing process. Notably, when the targeted scenarios are not rare in high-dimensional ODD, the calculation simplicity of SMs is the most important factor. Even random testing can be a viable option in such circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tsy完成签到 ,获得积分10
刚刚
April发布了新的文献求助20
刚刚
1秒前
今后应助不安豁采纳,获得10
2秒前
huifang发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
67发布了新的文献求助10
3秒前
代萌萌完成签到,获得积分10
3秒前
啊哈哈哈发布了新的文献求助10
4秒前
4秒前
四喜格格完成签到,获得积分10
5秒前
科研通AI5应助Laus采纳,获得10
5秒前
Godspeed发布了新的文献求助10
6秒前
悦耳的乐松完成签到,获得积分10
7秒前
星星泡饭发布了新的文献求助10
7秒前
着急的语儿完成签到,获得积分10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得30
7秒前
差劲先森完成签到 ,获得积分10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
科目三应助goodgoodstudy采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
Wu发布了新的文献求助10
8秒前
8秒前
lemon应助科研通管家采纳,获得20
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
打打应助聪聪great采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
9秒前
无名完成签到,获得积分10
9秒前
打打应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得40
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762