Accelerated Safety Testing for Highly Automated Vehicles: Application and Capability Comparison of Surrogate Models

可能性 计算机科学 过程(计算) 理论(学习稳定性) 可靠性工程 选择(遗传算法) 考试(生物学) 替代模型 风险分析(工程) 机器学习 工程类 逻辑回归 操作系统 古生物学 生物 医学
作者
He Zhang,Jian Sun,Ye Tian
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2409-2418 被引量:1
标识
DOI:10.1109/tiv.2023.3319158
摘要

With the gradual perfection of Highly Automated Vehicles (HAVs), it is obligatory to assess their safety performance in simulation that mirrors the real-world driving environment. However, the minimal likelihood of exposure to risky events can result in an extremely time-consuming testing process. To address this issue, we applied a surrogate-based method to expedite scenario-based simulated safety testing for HAVs. Model-based surrogates can quickly approximate the results of untested scenarios, thereby facilitating the search for risky scenarios. Car-following and Cut-in scenarios were chosen as two representative Operational Design Domains (ODDs) with different dimensions for case study. Thus, the capabilities of various Surrogate Models (SMs) can be examined in depth. Utilizing the HighD data, two testing ODDs were constructed to be consistent with naturalistic distribution. We demonstrated that the performances of six mainstream SMs differ significantly as the frequency of risky scenarios decreases. Additionally, we conducted multiple rounds of tests to compare the stability of SMs. We also presented a proposal on SMs selection according to the complexity of ODDs and the rarity of risky scenarios. Compared with random testing, the surrogate-based method can search for 4 times as many high-risk Car-following scenarios with only 4% of the test resources, showing great potential in accelerating the testing process. Notably, when the targeted scenarios are not rare in high-dimensional ODD, the calculation simplicity of SMs is the most important factor. Even random testing can be a viable option in such circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
雪白鸿涛发布了新的文献求助10
3秒前
3秒前
若水发布了新的文献求助10
4秒前
66小鼠完成签到,获得积分10
8秒前
8秒前
bkagyin应助不吃鱼的猫采纳,获得10
8秒前
CodeCraft应助hahaaa采纳,获得10
8秒前
勤奋酒窝完成签到,获得积分10
9秒前
goodgoodstudy完成签到,获得积分10
11秒前
笑林完成签到 ,获得积分10
11秒前
hearz发布了新的文献求助10
13秒前
Kal完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
肚皮完成签到 ,获得积分10
19秒前
哇卡卡发布了新的文献求助10
21秒前
23秒前
乐乐应助侯mm采纳,获得10
23秒前
24秒前
酷波er应助樊倩采纳,获得10
25秒前
25秒前
英姑应助NO0809采纳,获得10
26秒前
YuchaoJia发布了新的文献求助10
30秒前
ceeray23应助科研通管家采纳,获得10
30秒前
ceeray23应助科研通管家采纳,获得10
30秒前
充电宝应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
深情安青应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
ceeray23应助科研通管家采纳,获得10
31秒前
英姑应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得30
31秒前
LaTeXer应助科研通管家采纳,获得100
31秒前
Dean应助科研通管家采纳,获得100
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916646
求助须知:如何正确求助?哪些是违规求助? 4190063
关于积分的说明 13013239
捐赠科研通 3959493
什么是DOI,文献DOI怎么找? 2170751
邀请新用户注册赠送积分活动 1188815
关于科研通互助平台的介绍 1096866