亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerated Safety Testing for Highly Automated Vehicles: Application and Capability Comparison of Surrogate Models

可能性 计算机科学 过程(计算) 理论(学习稳定性) 可靠性工程 选择(遗传算法) 考试(生物学) 替代模型 风险分析(工程) 机器学习 工程类 逻辑回归 操作系统 古生物学 生物 医学
作者
He Zhang,Jian Sun,Ye Tian
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2409-2418 被引量:1
标识
DOI:10.1109/tiv.2023.3319158
摘要

With the gradual perfection of Highly Automated Vehicles (HAVs), it is obligatory to assess their safety performance in simulation that mirrors the real-world driving environment. However, the minimal likelihood of exposure to risky events can result in an extremely time-consuming testing process. To address this issue, we applied a surrogate-based method to expedite scenario-based simulated safety testing for HAVs. Model-based surrogates can quickly approximate the results of untested scenarios, thereby facilitating the search for risky scenarios. Car-following and Cut-in scenarios were chosen as two representative Operational Design Domains (ODDs) with different dimensions for case study. Thus, the capabilities of various Surrogate Models (SMs) can be examined in depth. Utilizing the HighD data, two testing ODDs were constructed to be consistent with naturalistic distribution. We demonstrated that the performances of six mainstream SMs differ significantly as the frequency of risky scenarios decreases. Additionally, we conducted multiple rounds of tests to compare the stability of SMs. We also presented a proposal on SMs selection according to the complexity of ODDs and the rarity of risky scenarios. Compared with random testing, the surrogate-based method can search for 4 times as many high-risk Car-following scenarios with only 4% of the test resources, showing great potential in accelerating the testing process. Notably, when the targeted scenarios are not rare in high-dimensional ODD, the calculation simplicity of SMs is the most important factor. Even random testing can be a viable option in such circumstances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
11秒前
shinn发布了新的文献求助10
17秒前
小智完成签到,获得积分10
17秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
20秒前
小智发布了新的文献求助10
20秒前
耕云钓月发布了新的文献求助10
23秒前
26秒前
29秒前
33秒前
然463完成签到 ,获得积分10
33秒前
34秒前
34秒前
夜夜景发布了新的文献求助10
37秒前
38秒前
美美发布了新的文献求助10
41秒前
李爱国应助shinn采纳,获得10
41秒前
忆修发布了新的文献求助30
44秒前
53秒前
54秒前
54秒前
55秒前
ly发布了新的文献求助10
56秒前
LL完成签到 ,获得积分10
59秒前
shinn发布了新的文献求助10
1分钟前
美美完成签到,获得积分10
1分钟前
众人皆醉我独醒完成签到,获得积分10
1分钟前
1分钟前
BowieHuang应助oleskarabach采纳,获得10
1分钟前
1分钟前
patrickli发布了新的文献求助10
1分钟前
Tree_QD完成签到 ,获得积分10
1分钟前
Jasper应助Yikepp采纳,获得10
1分钟前
1分钟前
1分钟前
直率的醉冬完成签到,获得积分10
1分钟前
CipherSage应助shinn采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247