The predictive value of tumor mutation burden on survival of gastric cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis

医学 内科学 荟萃分析 子群分析 危险系数 肿瘤科 癌症 出版偏见 胃肠病学 置信区间
作者
Liyuan Ke,Li Su,Danxue Huang
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:124: 110986-110986 被引量:9
标识
DOI:10.1016/j.intimp.2023.110986
摘要

Tumor mutation burden (TMB) is a complement to traditional biomarkers related to the efficacy of immune checkpoint inhibitors (ICIs). The relationship between TMB and the efficacy of ICIs in gastric cancer was controversial. The systematic review and meta-analysis were conducted to investigate the predictive value of TMB on survival of gastric cancer patients treated with ICIs. We searched the databases PubMed, Embase, and Web of Science for articles, then screened eligible articles according to inclusion criteria. The effective data were extracted to calculate the pooled effects of hazard ratio (HR) for overall survival (OS) and progression-free survival (PFS), then perform publication bias, sensitivity analysis, and subgroup analysis by STATA 16.0. The high TMB patients showed significantly longer survival than the low TMB patients (OS: HR 0.65,95% CI 0.55, 0.77, p < 0.001; PFS: HR 0.51, 95% CI 0.33, 0.77, p = 0.001). In the Asian subgroup, patients with high TMB exhibited better prognosis compared to low TMB (OS: HR 0.56, 95% CI 0.43, 0.72, p < 0.001; PFS: HR 0.45, 95% CI 0.28, 0.72, p = 0.001). In the non-Asian subgroup, the survival benefit was observed to be skewed toward patients with high TMB, but it was not statistically significant (OS:HR 0.61, 95% CI 0.32, 1.16, p = 0.133; PFS:HR 0.68, 95% CI 0.31, 1.48, p = 0.322). This meta-analysis demonstrated that gastric cancer patients with high TMB showed significant benefits from ICIs compared to those with low TMB patients, particularly in Asian populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MXene发布了新的文献求助10
刚刚
1秒前
啦啦啦发布了新的文献求助10
1秒前
我很懵逼完成签到,获得积分10
3秒前
在水一方应助小高采纳,获得10
3秒前
一口一个完成签到,获得积分10
4秒前
kilig完成签到 ,获得积分10
5秒前
耳鼻喉不发言完成签到,获得积分10
8秒前
11秒前
斯文败类应助Eutopia采纳,获得10
11秒前
易安完成签到 ,获得积分10
14秒前
李浩完成签到 ,获得积分10
17秒前
大个应助Cecilia_kou采纳,获得10
22秒前
23秒前
赵悦彤完成签到,获得积分10
24秒前
24秒前
Jasper应助LYJ采纳,获得10
28秒前
Eutopia完成签到 ,获得积分10
28秒前
可爱的函函应助机智向松采纳,获得10
29秒前
31秒前
小洋睡不着完成签到,获得积分10
32秒前
33完成签到 ,获得积分10
32秒前
33秒前
华仔应助威武大将军采纳,获得10
34秒前
35秒前
35秒前
豆子发布了新的文献求助10
36秒前
EasyNan应助hihi采纳,获得10
36秒前
不懈奋进应助科研通管家采纳,获得30
36秒前
科研小民工应助科研通管家采纳,获得200
36秒前
大模型应助科研通管家采纳,获得10
36秒前
Estrella应助科研通管家采纳,获得10
36秒前
orixero应助科研通管家采纳,获得10
36秒前
乐乐应助科研通管家采纳,获得10
36秒前
小二郎应助科研通管家采纳,获得10
37秒前
李健应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
禾斗石开发布了新的文献求助20
39秒前
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735955
求助须知:如何正确求助?哪些是违规求助? 3279643
关于积分的说明 10016719
捐赠科研通 2996337
什么是DOI,文献DOI怎么找? 1644024
邀请新用户注册赠送积分活动 781751
科研通“疑难数据库(出版商)”最低求助积分说明 749425