Federated Multi-Task Learning with Non-Stationary and Heterogeneous Data in Wireless Networks

计算机科学 推论 机器学习 无线 分歧(语言学) 随机性 趋同(经济学) 数据建模 无线网络 人工智能 数据挖掘 经济增长 电信 数据库 统计 数学 哲学 经济 语言学
作者
Hongwei Zhang,Meixia Tao,Yuanming Shi,Xiaoyan Bi,Khaled B. Letaief
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 2653-2667 被引量:2
标识
DOI:10.1109/twc.2023.3301611
摘要

Federated multi-task learning (FMTL) is a promising edge learning framework to fit the data with non-independent and non-identical distribution (non-i.i.d.) by leveraging the statistical correlations among the personalized models. For many practical applications in wireless communications, the sensory data are not only heterogeneous but also non-stationary due to the mobility of terminals and the randomness of link connections. The non-stationary heterogeneous data may lead to model divergence and staleness in the training stage and poor test accuracy in the inference stage. In this paper, we shall develop an adaptive FMTL framework, which works well with non-stationary data. We further propose to optimize the model updating and cluster splitting schemes in the training stage to accelerate model convergence. We also design a low-complexity model selection and pruning schemes in both the training and inference stages to select the best model for fitting the current data and delete redundant models, respectively. The proposed framework is validated in the edge learning model, namely, the linear regression problem for indoor localization in wireless networks and GNN for wireless power control problems. Numerical results demonstrate that the proposed framework can accelerate the model training convergence and reduce the computation complexity while ensuring model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
开放惜寒发布了新的文献求助10
3秒前
Xieyusen发布了新的文献求助10
4秒前
4秒前
sciiiiii发布了新的文献求助10
6秒前
7秒前
8秒前
无语的y天完成签到 ,获得积分10
10秒前
11秒前
12秒前
李小二完成签到,获得积分10
14秒前
iNk应助陈媛采纳,获得10
14秒前
认真的烧鹅完成签到,获得积分20
14秒前
HoHo完成签到 ,获得积分10
15秒前
Alice完成签到,获得积分10
15秒前
佳啊发布了新的文献求助10
15秒前
17秒前
Oliver完成签到 ,获得积分10
17秒前
xiaogao要读博完成签到,获得积分10
18秒前
Hello应助念姬采纳,获得10
20秒前
科研圣体发布了新的文献求助10
23秒前
23秒前
24秒前
所所应助细心的恋风采纳,获得10
25秒前
JamesPei应助姽稚采纳,获得10
26秒前
Xieyusen发布了新的文献求助10
28秒前
浮生完成签到 ,获得积分10
29秒前
30秒前
是的发放发布了新的文献求助10
31秒前
小马甲应助王佳豪采纳,获得10
32秒前
33秒前
35秒前
38秒前
39秒前
39秒前
义气的亦寒完成签到,获得积分10
40秒前
41秒前
吴晨曦完成签到,获得积分10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966989
求助须知:如何正确求助?哪些是违规求助? 3512429
关于积分的说明 11163148
捐赠科研通 3247241
什么是DOI,文献DOI怎么找? 1793778
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432