亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization of p-Type Cu2O Nanocube Photocatalysts Based on Electronic Effects

玻尔半径 激子 半导体 半径 光催化 扩散 材料科学 玻尔模型 带隙 电子 原子半径 载流子 可见光谱 粒径 纳米技术 分子物理学 化学物理 化学 量子点 光电子学 凝聚态物理 物理化学 物理 催化作用 计算机科学 有机化学 计算机安全 生物化学 量子力学 热力学
作者
Rui Lin,Haowei Chen,Tingting Cui,Zedong Zhang,Qixin Zhou,Nan Lin,Weng‐Chon Cheong,Lena Schröck,Vanessa Ramm,Qing-Rong Ding,Liang Xiao,Seryio Saris,Fedja J. Wendisch,Stefan A. Maier,Roland A. Fischer,Yongfa Zhu,Dong Wang,Emiliano Cortés
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (17): 11352-11361 被引量:15
标识
DOI:10.1021/acscatal.3c02710
摘要

The size effect in semiconductor photocatalysis has been widely investigated but still remains elusive. Herein, employing p-type Cu2O nanocubes as the heterogeneous photocatalysts, we propose a feasible size optimization strategy to enhance the photocatalytic performance of semiconductors. With the size of Cu2O increasing from 2.5 nm (exciton Bohr radius) to 5 nm (twice the exciton Bohr radius), the corresponding calculated band gap of Cu2O decreases from 3.39 to 2.41 eV, indicating that controlling the size to above twice the exciton Bohr radius is vital for retaining the visible-light response of Cu2O. Based on the theoretical calculations and experimental measurements of the charge carrier dynamics, we found that the synthesized 30 nm Cu2O nanocubes have an electron diffusion length of 191 nm, while 229 nm Cu2O nanocubes show an electron diffusion length of 45 nm. An electron diffusion length larger than the semiconductor particle size lowers the electron–hole recombination, resulting in a visible-light CO generation rate 23.4 times higher for the smaller Cu2O nanocubes than that for the larger ones. These results verify that confining Cu2O size to within the minority carrier diffusion length and above twice the exciton Bohr radius is a promising way to enhance Cu2O photocatalytic activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuLu完成签到 ,获得积分10
4秒前
Ava应助artos采纳,获得10
9秒前
顾矜应助读书的时候采纳,获得10
10秒前
从容芮完成签到,获得积分0
13秒前
ding应助读书的时候采纳,获得10
27秒前
大个应助河狸采纳,获得10
34秒前
37秒前
50秒前
54秒前
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
狂野的含烟完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
研友_VZG7GZ应助何88888888采纳,获得10
2分钟前
Lucas应助虚拟的凌雪采纳,获得10
2分钟前
hugeyoung完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
君君完成签到,获得积分10
3分钟前
3分钟前
搜集达人应助君君采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688010
求助须知:如何正确求助?哪些是违规求助? 5062367
关于积分的说明 15193559
捐赠科研通 4846387
什么是DOI,文献DOI怎么找? 2598844
邀请新用户注册赠送积分活动 1550914
关于科研通互助平台的介绍 1509475