IC50型
化学
葡萄孢霉素
组织蛋白酶B
细胞毒性
生物化学
组织蛋白酶D
对接(动物)
酶
药理学
体外
生物
医学
蛋白激酶C
护理部
作者
Shilpi Singh,Akhilesh Kumar Maurya,Abha Meena,Nidhi Mishra,Suaib Luqman
标识
DOI:10.1016/j.fct.2023.113988
摘要
Cathepsin-D (CATD) inhibitors' design and development drawn interest due to their potential therapeutic applications in managing different cancer types, including lung cancer. This study investigated myricitrin, a flavonol-3-O-rhamnoside, for its binding affinity to CATD. Molecular docking experiments revealed a strong binding affinity (-7.8 kcal/mol). Molecular dynamics (MD) simulation confirmed the complex's stability, while enzyme activity studies showed inhibitory concentration (IC50) of 35.14 ± 6.08 μM (in cell-free) and 16.00 ± 3.48 μM (in cell-based) test systems. Expression analysis indicated downregulation of CATD with a fold change of 1.35. Myricitrin demonstrated antiproliferative effects on NCIH-520 cells [IC50: 64.11 μM in Sulphorhodamine B (SRB), 24.44 μM in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], but did not affect healthy CHANG cells. It also prolonged the G2/M phase (at 10 μM: 1.19-fold; at 100 μM: 1.13-fold) and increased sub-diploid population by 1.35-fold. Based on the analysis done using SwissADME program, it is predicted that myricitrin is not a cytochrome p450s (CYPs) inhibitor, followed the rule of Ghose and found not permeable to the blood-brain barrier (BBB) which suggests it as a safe molecule. In summary, the experimental findings may establish the foundation for myricitrin and its analogues to be used therapeutically in CATD-mediated lung cancer prevention.
科研通智能强力驱动
Strongly Powered by AbleSci AI